Abstract

We demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where the round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-wideband perfect solar light absorbers using titanium and silicon dioxide thin-film cascade optical nanocavities

Jinnan Chen, Junpeng Guo, and Liang-Yao Chen
Opt. Mater. Express 6(12) 3804-3813 (2016)

Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime

Shiwei Shu, Zhe Li, and Yang Yang Li
Opt. Express 21(21) 25307-25315 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  4. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref] [PubMed]
  5. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [Crossref] [PubMed]
  6. Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
    [Crossref]
  7. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  8. T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
    [Crossref]
  9. W. Kim, B. S. Simpkins, J. P. Long, B Zhang, J. Hendrickson, and J. Guo, “Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 32(8), 1686–1692 (2015).
    [Crossref] [PubMed]
  10. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  11. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  12. M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
    [Crossref]
  13. B. Ding, M. Qiu, and R. J. Blaikie, “Manipulating light absorption in dye-doped dielectric films on reflecting surfaces,” Opt. Express 22(21), 25965–25975 (2014).
    [Crossref] [PubMed]
  14. H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
    [Crossref] [PubMed]
  15. F. F. Schlich and R. Spolenak, “Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials,” Appl. Phys. Lett. 103(21), 213112 (2013).
    [Crossref]
  16. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  17. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
    [Crossref] [PubMed]
  18. H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
    [Crossref] [PubMed]
  19. Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
    [Crossref]
  20. F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
    [Crossref]
  21. K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
    [Crossref] [PubMed]
  22. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [Crossref] [PubMed]
  23. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
    [Crossref] [PubMed]
  24. S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
    [Crossref] [PubMed]
  25. J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short-to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
    [Crossref]
  26. K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
    [Crossref]
  27. W. W. Salisbury, U.S. Patent 2,599,944 (10 June 1952).
  28. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
    [Crossref]
  29. B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett. 32(11), 1578–1580 (2007).
    [Crossref] [PubMed]
  30. P. Yeh, Optical Waves in Layered Media (Wiley, New Jersey, 2005), Chap. 5.
  31. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960), Chap. 61.

2016 (1)

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

2015 (7)

J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short-to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
[Crossref]

W. Kim, B. S. Simpkins, J. P. Long, B Zhang, J. Hendrickson, and J. Guo, “Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 32(8), 1686–1692 (2015).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
[Crossref] [PubMed]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
[Crossref]

2014 (6)

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

B. Ding, M. Qiu, and R. J. Blaikie, “Manipulating light absorption in dye-doped dielectric films on reflecting surfaces,” Opt. Express 22(21), 25965–25975 (2014).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

2013 (6)

F. F. Schlich and R. Spolenak, “Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials,” Appl. Phys. Lett. 103(21), 213112 (2013).
[Crossref]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
[Crossref] [PubMed]

2012 (4)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

2010 (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (1)

Aizenberg, J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Akinoglu, E. M.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Albrektsen, O.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
[Crossref] [PubMed]

Beister, J.

Bhaskaran, H.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Blaikie, R. J.

Blanchard, R.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Brandt, T.

Buchwald, W.

Butun, S.

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Byrnes, S. J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Cao, F.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Cleary, J. W.

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Ding, B.

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett. 32(11), 1578–1580 (2007).
[Crossref] [PubMed]

Fan, L.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Gan, Q.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Giersig, M.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett. 32(11), 1578–1580 (2007).
[Crossref] [PubMed]

Guo, C. F.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Guo, J.

Guo, L.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Guo, L. J.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hendrickson, J.

Hendrickson, J. R.

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Hu, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Jacobs, T.

Ji, C.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Ji, D.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Jiang, S.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Kempa, K.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Kim, W.

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
[Crossref] [PubMed]

Kolle, M.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Law, S.

Lee, J. Y.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Lee, K. T.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Leedy, K. D.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Li, Z.

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Lindenberg, A. M.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
[Crossref]

Liu, K.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Liu, Z.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Long, J. P.

Luk, T. S.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mirshafieyan, S. S.

Nader, N.

Nielsen, M. G.

Nordlander, P.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Pflaum, J.

Pors, A.

Qiu, M.

Ren, Z.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Rooney, G.

Schlich, F. F.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
[Crossref]

F. F. Schlich and R. Spolenak, “Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials,” Appl. Phys. Lett. 103(21), 213112 (2013).
[Crossref]

Seo, S.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Simpkins, B. S.

Song, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Soref, R.

Spolenak, R.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
[Crossref]

F. F. Schlich and R. Spolenak, “Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials,” Appl. Phys. Lett. 103(21), 213112 (2013).
[Crossref]

Streyer, W.

Sun, T.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Tan, Y.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, Y.

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Wang, Z.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Wasserman, D.

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Yu, Z.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Zalden, P.

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
[Crossref]

Zeng, X.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Zhang, B

Zhang, B.

Zhang, N.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Zhou, M.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Zhu, X.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

ACS Photonics (2)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, “Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses,” ACS Photonics 2(2), 178–182 (2015).
[Crossref]

Adv. Mater. (2)

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

F. F. Schlich and R. Spolenak, “Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials,” Appl. Phys. Lett. 103(21), 213112 (2013).
[Crossref]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

T. Sun, C. F. Guo, F. Cao, E. M. Akinoglu, Y. Wang, M. Giersig, Z. Ren, and K. Kempa, “A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes,” Appl. Phys. Lett. 104(25), 251119 (2014).
[Crossref]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (2)

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Sci. Rep. (2)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5, 8157 (2015).
[Crossref] [PubMed]

Other (3)

P. Yeh, Optical Waves in Layered Media (Wiley, New Jersey, 2005), Chap. 5.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960), Chap. 61.

W. W. Salisbury, U.S. Patent 2,599,944 (10 June 1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) The schematic ultra-thin nanocavity perfect light absorber structure. (b) Measured optical reflectivity spectra from devices with 40 nm Si thickness and different top Al layer thicknesses from 5 nm to 10 nm. Perfect absorption is observed for the device with 7 nm Al layer thickness. A SEM image of the 7 nm Al film surface is shown as the inset. (c) Photographs of the four devices with different Si layer thicknesses, taken under ambient light. (d) Measured optical reflectivity spectra of perfect absorbers of different Si thicknesses at the near normal angle of incidence of 10 degrees.

Fig. 2
Fig. 2

(a-d) Measured optical reflectivity spectra from devices with Si cavity layer thicknesses from 30 nm to 60 nm at different angle of incidence form 10° to 70°.

Fig. 3
Fig. 3

(a) Measured real and imaginary parts of the index of refraction of 7 nm and 100 nm aluminum films. The optical constants of Al films are dependent on the film thickness. (b) Measured real and imaginary parts of the index of refraction of 100 nm silicon film.

Fig. 4
Fig. 4

(a) 2D plot of the calculated optical reflectivity versus wavelength and Si layer thickness. The black band in (a) shows the perfect light absorption. (b) Calculated optical reflectivity spectra for structures with 30 nm to 60 nm Si layer thicknesses, respectively.

Fig. 5
Fig. 5

Calculated optical reflectivity versus wavelength and angle of incidence for perfect light absorbers with Si cavity layer thicknesses of (a) 30 nm, (b) 40 nm, (c) 50 nm, and (d) 60 nm respectively. The absorption is insensitive to the change of incident angle up to 70°.

Fig. 6
Fig. 6

(a) Calculated propagation phase delays in Si layer only. (b) Calculated phase changes at two Si boundaries with Al. (c) Calculated total round trip phase delays in Si nanocavity with different thicknesses. Perfect light absorption occurs when total round trip phase delay is zero in the cavity.

Fig. 7
Fig. 7

(a-d) Calculated round-trip phase delays vs. wavelength at different incident angles for four nanocavities with Si layer thicknesses of 30 nm, 40 nm, 50 nm, and 60 nm, respectively. The calculated phase delays remain insensitive to the change of incident angle up to 70°, which explains the omni-directional property of the perfect light absorbers.

Fig. 8
Fig. 8

Calculated real part, imaginary part, and magnitude of electric field (a-c) and magnetic field (d-f) distributions at the perfect absorption wavelength of 750 nm. The arrows indicate the directions of electric and magnetic fields in the structure.

Fig. 9
Fig. 9

(a) Calculated energy absorption density at 750 nm perfect absorption wavelength in the device structure of 50 nm Si thickness bounded with 7 nm Al on the top and 100 nm Al in the bottom. (b) Absorption density profile at the perfect absorption wavelength of 750 nm.

Fig. 10
Fig. 10

Measured optical reflectivity spectra from the 40 nm Si device in air, IPA, ethanol, and water. The inset shows the device picture when it is partially covered by IPA liquid and partial exposed to air.

Tables (1)

Tables Icon

Table 1 Parameters of Perfect Light Absorbers

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= | r | 2 = | M 21 M 11 | 2 ,
M=( M 11 M 12 M 21 M 22 )= D 0 1 ( D 1 P 1 D 1 1 )( D 2 P 2 D 2 1 ) D 3 .
P i =( exp(j φ i ) 0 0 exp(j φ i ) ), where φ i = 2π( n i j k i ) d i λ .
D i =( 1 1 ( n i j k i )cos θ i ( n i j k i )cos θ i ),
D i =( cos θ i cos θ i ( n i j k i ) ( n i j k i ) ),
φ total = φ s ( φ 21 + φ 23 )
Q= ω ε 0 8π Im[ ε r ]| E 0 | 2 ,

Metrics