Abstract

With the rapid development of nanotechnology over the past decade, lanthanide doped upconverting nanoparticles (UCNPs) have been successfully synthesized and have emerged as an important class of nanomaterials. In contrast to the traditional Yb3+-sensitized UCNPs, the emerging Nd3+-sensitized UCNPs have many merits in controlling the excitation of upconverting luminescence, including minimizing overheating effect, increasing the imaging depth and so on. In this review paper, we provide a comprehensive survey of the most recent advances in developing Nd3+-sensitized UCNPs, which include nanocomposition, mechanisms, and some typical nanostructures of Nd3+-sensitized UCNPs. Furthermore, an important emphasis is placed on various applications including downconversion and upconversion photoluminescence for bioimaging, high-resolution, and deep tissue imaging and tumor diagnosis and therapy. Potential challenges and prospective development are also discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals

Baoju Wang, Qiuqiang Zhan, Yuxiang Zhao, Ruitao Wu, Jing Liu, and Sailing He
Opt. Express 24(2) A302-A311 (2016)

Controlling the multicolor upconversion luminescence in CaF2 nanocrystals doped with Yb3+, Er3+ and Nd3+ ions under the excitation of a 808 nm laser

Xiaofan Zhao, Zining Yang, Xu Yang, Rui Wang, Maohui Yuan, Kai Han, Zongfu Jiang, Hongyan Wang, and Xiaojun Xu
Opt. Mater. Express 9(12) 4578-4587 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
    [Crossref] [PubMed]
  2. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref] [PubMed]
  3. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  4. N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
    [Crossref]
  5. S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
    [Crossref] [PubMed]
  6. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
    [Crossref] [PubMed]
  7. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
    [Crossref] [PubMed]
  8. J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
    [Crossref] [PubMed]
  9. H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
    [Crossref] [PubMed]
  10. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
    [Crossref] [PubMed]
  11. Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
    [Crossref]
  12. K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
    [Crossref] [PubMed]
  13. C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
    [Crossref]
  14. G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
    [Crossref]
  15. Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
    [Crossref] [PubMed]
  16. U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
    [Crossref]
  17. T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
    [Crossref]
  18. F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).
  19. A. A. Bol, R. van Beek, and A. Meijerink, “On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals,” Chem. Mater. 14(3), 1121–1126 (2002).
    [Crossref]
  20. H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
    [Crossref] [PubMed]
  21. C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
    [Crossref]
  22. J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref] [PubMed]
  23. X. Huang, “Dual-model upconversion luminescence from NaGdF4: Nd/Yb/Tm@ NaGdF 4: Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
    [Crossref]
  24. J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
    [Crossref]
  25. Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
    [Crossref] [PubMed]
  26. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
    [Crossref] [PubMed]
  27. X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
    [Crossref] [PubMed]
  28. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  29. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
    [Crossref] [PubMed]
  30. X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
    [Crossref]
  31. H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
    [Crossref] [PubMed]
  32. D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
    [Crossref] [PubMed]
  33. E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
    [Crossref] [PubMed]
  34. D. Gao, X. Zhang, and W. Gao, “Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
    [Crossref] [PubMed]
  35. D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
    [Crossref] [PubMed]
  36. Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
    [Crossref]
  37. G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
    [Crossref] [PubMed]
  38. J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
    [Crossref] [PubMed]
  39. U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
    [Crossref] [PubMed]
  40. G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
    [Crossref] [PubMed]
  41. R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
    [Crossref] [PubMed]
  42. X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
    [Crossref] [PubMed]
  43. Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
    [Crossref] [PubMed]
  44. H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
    [Crossref] [PubMed]
  45. B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
    [Crossref] [PubMed]
  46. D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
    [Crossref] [PubMed]
  47. F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
    [Crossref] [PubMed]
  48. W. Xu, H. Qi, L. Zheng, Z. Zhang, and W. Cao, “Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4,” Opt. Lett. 40(23), 5678–5681 (2015).
    [Crossref] [PubMed]
  49. Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
    [Crossref] [PubMed]
  50. D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology 204(2-3), 219–228 (2004).
    [Crossref] [PubMed]
  51. Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).
  52. M. Rao, S. Chawla, and N. Patel, “Melatonin reduction of fluoride-induced nephrotoxicity in mice,” Fluoride 42(2), 110–116 (2009).

2016 (1)

2015 (17)

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

W. Xu, H. Qi, L. Zheng, Z. Zhang, and W. Cao, “Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4,” Opt. Lett. 40(23), 5678–5681 (2015).
[Crossref] [PubMed]

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
[Crossref] [PubMed]

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

X. Huang, “Dual-model upconversion luminescence from NaGdF4: Nd/Yb/Tm@ NaGdF 4: Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
[Crossref]

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

2014 (6)

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
[Crossref] [PubMed]

2013 (7)

G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
[Crossref]

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

D. Gao, X. Zhang, and W. Gao, “Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

2012 (3)

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

2011 (4)

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

2010 (5)

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

2009 (3)

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
[Crossref] [PubMed]

M. Rao, S. Chawla, and N. Patel, “Melatonin reduction of fluoride-induced nephrotoxicity in mice,” Fluoride 42(2), 110–116 (2009).

2008 (1)

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

2006 (1)

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

2004 (1)

D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology 204(2-3), 219–228 (2004).
[Crossref] [PubMed]

2002 (2)

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

A. A. Bol, R. van Beek, and A. Meijerink, “On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals,” Chem. Mater. 14(3), 1121–1126 (2002).
[Crossref]

1959 (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
[Crossref]

Agren, H.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Ai, F.

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

Ai, H.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Alford, R.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Andersson-Engels, S.

H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Bhat, P. G.

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

Bilsel, O. S.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Binnemans, K.

K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
[Crossref] [PubMed]

Bloembergen, N.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
[Crossref]

Bol, A. A.

A. A. Bol, R. van Beek, and A. Meijerink, “On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals,” Chem. Mater. 14(3), 1121–1126 (2002).
[Crossref]

Bovero, E.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Boyer, J.-C.

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Bünzli, J.-C. G.

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

Caamano, A. J.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Cao, W.

Carrasco, E.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Chan, E. M.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Chang, C. C.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Chang, Y.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Chawla, S.

M. Rao, S. Chawla, and N. Patel, “Melatonin reduction of fluoride-induced nephrotoxicity in mice,” Fluoride 42(2), 110–116 (2009).

Chen, D.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Chen, G. Y.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Chen, J.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Chen, M.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Chen, X.

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Chen, Y.

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Cheng, Z.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Chong, B.

D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
[Crossref] [PubMed]

Choyke, P. L.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Cohen, B. E.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Deng, R.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Deng, X.

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Ding, M.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Doke, G.

G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
[Crossref]

Dong, D.

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Dong, L.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Eden, H. S.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Eliseeva, S. V.

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

Fan, W.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Feng, J.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Feng, W.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Gao, D.

D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
[Crossref] [PubMed]

D. Gao, X. Zhang, and W. Gao, “Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Gao, N.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Gao, W.

D. Gao, X. Zhang, and W. Gao, “Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Gargas, D. J.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Goldberg, J. D.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Grube, J.

G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
[Crossref]

Gu, L.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Gu, Z.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Han, G.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Han, J.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Hao, Z.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

He, F.

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

He, S.

B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
[Crossref] [PubMed]

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Hou, Z.

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

Huang, P.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Huang, S.

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Huang, X.

X. Huang, “Dual-model upconversion luminescence from NaGdF4: Nd/Yb/Tm@ NaGdF 4: Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
[Crossref]

Huang, X. Y.

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

Hung, T. F.

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

Iglesias de la Cruz, M. C.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Jacinto, C.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Jaque, D.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Ji, Z.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Jin, D.

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Jin, S.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Ju, Q.

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

Juarranz, A.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Kele, P.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Kobayashi, H.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Kong, X.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Kumar, K. U.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Law, W. C.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Lee, S. T.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Lei, P.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Li, A. H.

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

Li, C.

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

Li, C. R.

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Li, F.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Li, S.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Li, S. F.

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Li, X.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Liang, H.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Lin, J.

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

Liu, B.

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Liu, G.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Liu, G. Y.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Liu, H.

H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
[Crossref] [PubMed]

Liu, J.

Liu, L.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Liu, S.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Liu, X.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Liu, Y.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

Liu, Z.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Liu, Z. F.

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Luo, Y.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Ma, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Mader, H. S.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Mai, H.-X.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Meijerink, A.

A. A. Bol, R. van Beek, and A. Meijerink, “On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals,” Chem. Mater. 14(3), 1121–1126 (2002).
[Crossref]

Milliron, D. J.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Mousavi, M.

H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
[Crossref] [PubMed]

Nan, F.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Ogawa, M.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Ostrowski, A. D.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Patel, N.

M. Rao, S. Chawla, and N. Patel, “Melatonin reduction of fluoride-induced nephrotoxicity in mice,” Fluoride 42(2), 110–116 (2009).

Peng, Q.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Qi, H.

Qian, J.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Ramiro, J.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Rao, M.

M. Rao, S. Chawla, and N. Patel, “Melatonin reduction of fluoride-induced nephrotoxicity in mice,” Fluoride 42(2), 110–116 (2009).

Rao, S. H.

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

Rao, S. M.

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

Ren, W.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Rocha, U.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Saleh, S. M.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Sarakovskis, A.

G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
[Crossref]

Schuck, P. J.

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Shanthakumari, D.

D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology 204(2-3), 219–228 (2004).
[Crossref] [PubMed]

Shao, M.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Shen, J.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Shi, J.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

Shivarajashankara, Y.

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

Shivashankara, A.

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

Si, R.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Söderlund, H.

H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
[Crossref] [PubMed]

Sole, J. G.

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Solé, J. G.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Somesfalean, G.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Song, C. L.

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Springis, M.

G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
[Crossref]

Srinivasalu, S.

D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology 204(2-3), 219–228 (2004).
[Crossref] [PubMed]

Su, Y.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Subramanian, S.

D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology 204(2-3), 219–228 (2004).
[Crossref] [PubMed]

Sun, L. D.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Sun, Q.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Sun, T.

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

Swihart, M. T.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Tian, D.

D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
[Crossref] [PubMed]

Tian, G.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Tu, L.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Urano, Y.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

van Beek, R.

A. A. Bol, R. van Beek, and A. Meijerink, “On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals,” Chem. Mater. 14(3), 1121–1126 (2002).
[Crossref]

van Veggel, F. C.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Villa, I.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Vu, A. M.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Wang, B.

B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
[Crossref] [PubMed]

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

Wang, C.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Wang, D.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Wang, F.

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Wang, J.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Wang, Q.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Wang, R.

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Wang, Y. F.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Wen, H.

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

Wolfbeis, O. S.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Wu, F.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Wu, R.

Xiao, J. W.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Xie, J.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Xie, X.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Xing, G.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Xu, C.

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

Xu, H.

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Xu, Q. H.

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Xu, W.

Xu, X.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Xu, Y. H.

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

Xue, B.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Yan, C. H.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Yan, C.-H.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yan, L.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Yan, Z.-G.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yang, K.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Yang, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Yao, J.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Yao, L.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Yin, W.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

You, L.-P.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yu, Q. X.

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Yu, S. F.

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

Yuan, Q.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Zhan, Q.

B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
[Crossref] [PubMed]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
[Crossref] [PubMed]

Zhang, H.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Zhang, P.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Zhang, X.

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

D. Gao, X. Zhang, and W. Gao, “Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Zhang, Y.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Zhang, Y.-W.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Zhang, Z.

W. Xu, H. Qi, L. Zheng, Z. Zhang, and W. Cao, “Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4,” Opt. Lett. 40(23), 5678–5681 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhao, D.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zhao, H.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Zhao, Y.

B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
[Crossref] [PubMed]

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zheng, L.

Zhong, J.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Zhong, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Zhou, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Zhou, J. C.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Zhou, L.

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zhu, G.

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

Zhu, H.

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

Zhu, X.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Zou, X.

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

D. Gao, X. Zhang, and W. Gao, “Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

ACS Nano (3)

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- Doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Angew. Chem. Int. Ed. Engl. (5)

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, “Upconverting near-infrared light through energy management in core-shell-shell nanoparticles,” Angew. Chem. Int. Ed. Engl. 52(50), 13419–13423 (2013).
[Crossref] [PubMed]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. Engl. 52(16), 4366–4369 (2013).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. Int. Ed. Engl. 53(45), 12086–12090 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

U. Rocha, K. U. Kumar, C. Jacinto, J. Ramiro, A. J. Caamano, J. G. Sole, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104(5), 053703 (2014).
[Crossref]

Biomed. Opt. Express (1)

Chem. Mater. (1)

A. A. Bol, R. van Beek, and A. Meijerink, “On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals,” Chem. Mater. 14(3), 1121–1126 (2002).
[Crossref]

Chem. Rev. (3)

K. Binnemans, “Lanthanide-based luminescent hybrid materials,” Chem. Rev. 109(9), 4283–4374 (2009).
[Crossref] [PubMed]

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (3)

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Dalton Trans. (2)

D. Tian, D. Gao, B. Chong, and X. Liu, “Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles,” Dalton Trans. 44(9), 4133–4140 (2015).
[Crossref] [PubMed]

F. He, C. Li, X. Zhang, Y. Chen, X. Deng, B. Liu, Z. Hou, S. Huang, D. Jin, and J. Lin, “Optimization of upconversion luminescence of Nd3+-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery,” Dalton Trans. 45, 1708–1716 (2015).

Fluoride (2)

Y. Shivarajashankara, A. Shivashankara, P. G. Bhat, S. M. Rao, and S. H. Rao, “Histological changes in the brain of young fluoride-intoxicated rats,” Fluoride 35(1), 12–21 (2002).

M. Rao, S. Chawla, and N. Patel, “Melatonin reduction of fluoride-induced nephrotoxicity in mice,” Fluoride 42(2), 110–116 (2009).

J. Alloys Compd. (1)

X. Huang, “Dual-model upconversion luminescence from NaGdF4: Nd/Yb/Tm@ NaGdF 4: Eu/Tb core–shell nanoparticles,” J. Alloys Compd. 628, 240–244 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L. D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

H. Söderlund, M. Mousavi, H. Liu, and S. Andersson-Engels, “Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles,” J. Biomed. Opt. 20(8), 086008 (2015).
[Crossref] [PubMed]

J. Mater. Chem. (1)

C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” J. Mater. Chem. 20(33), 6831–6847 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Nano Lett. (1)

E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas, A. D. Ostrowski, P. J. Schuck, B. E. Cohen, and D. J. Milliron, “Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission,” Nano Lett. 12(7), 3839–3845 (2012).
[Crossref] [PubMed]

Nano Res. (1)

Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, and Q. Wang, “Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array,” Nano Res. 8(9), 2970–2977 (2015).
[Crossref]

Nanoscale (5)

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, and F. Li, “An Nd³⁺-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite,” Nanoscale 7(9), 4105–4113 (2015).
[Crossref] [PubMed]

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Y. Chen, B. Liu, X. Deng, S. Huang, Z. Hou, C. Li, and J. Lin, “Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment,” Nanoscale 7(18), 8574–8583 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

T. Sun, A. H. Li, C. Xu, Y. H. Xu, and R. Wang, “Energy transfer properties of Nd3+ -> Yb3+ in Nd:Yb:LiNbO3 crystals,” Opt. Laser Technol. 56, 322–325 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
[Crossref]

Radiat. Meas. (1)

G. Doke, A. Sarakovskis, J. Grube, and M. Springis, “Photoluminescence of neodymium and erbium doped NaLaF4 material,” Radiat. Meas. 56, 27–30 (2013).
[Crossref]

Sci. Rep. (1)

F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, and G. Zhu, “A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer,” Sci. Rep. 5, 10785 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. R. Li, S. F. Li, D. Dong, Z. F. Liu, C. L. Song, and Q. X. Yu, “Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application,” Sens. Actuators B Chem. 134(1), 313–316 (2008).
[Crossref]

Small (1)

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. C. Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Toxicology (1)

D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology 204(2-3), 219–228 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic mechanism of cascade-pumped process.
Fig. 2
Fig. 2 (a) Schematic design (top) and simplified energy level diagram (bottom) of a core@shell nanoparticle for photon upconversion under 800 nm excitation. Nd3+ ions doped in the core and shell layers serve as sensitizers to absorb the excitation energy and subsequently transfer it to Yb3+ ions. After energy migration from the Yb3+ ions to activator ions, activator emission is achieved via the Nd3+-sensitization process [27]. (b) Schematic illustration of the proposed energy-transfer mechanisms in the quenching-shield sandwich-structured UCNPs upon 800 nm excitation. Proposed energy-transfer mechanisms in the quenching-shield sandwich nanoparticle upon 800 nm diode-laser excitation [26]. (c) Schematic design of the active-core@active-shell nanoparticle architecture for photon upconversion upon 808 nm laser excitation. Nd3+ and Yb3+ ions are simultaneously codoped in both the core and shell layers, and act as cosensitizers to absorb the excitation energy and subsequently transfer it to the Ln3+ activator ions, giving rising to upconverted emissions. Schematic illustration of the energy-transfer mechanism in the active-core@active-shell nanoparticles [31] (Reprinted with permission from [26, 27, 31 ]).
Fig. 3
Fig. 3 The upconverting emission spectra of (a) β-NaYF4:(0–5%)Nd,20%Yb,2%Er/NaYF4 and (b) β-NaYF4:(0–3%)Nd,30%Yb,0.5%Tm/NaYF4 UCNPs. The upconverting luminescent pictures were inserted in (a, b) with the laser path labeled [24]. (c) Room-temperature upconversion luminescence spectra of ErCSS nanoparticles dispersed in water and cyclohexane (0.5 W/cm2 800-nm excitation), ErCS nanoparticles dispersed in water and cyclohexane (0.5 W/cm2 980-nm excitation) with the same concentration (1mg/ml). Upconversion luminescence photograph of ErCSS nanoparticles dispersed in water and cyclohexane [26]. (d) A schematic diagram to achieve 808 nm excited single-band red upconversion luminescence by synthesized Yb/Ho/Ce:NaGdF4@Yb/Nd:NaYF4 active-core@active-shell nanoparticles (inset: schematic active-core@active-shell structure and energy level diagrams of nanoparticle) [30] (Reprinted with permission from [24, 26, 30 ]).
Fig. 4
Fig. 4 (a) The schematic diagram of core@shell NaGdF4:Nd3+/NaGdF4 nanocrystals under 740 nm excitation, (b) PL images of HeLa cells treated with ligand-free (NaGdF4:3% Nd3+)/NaGdF4 nanoparticles. Inset shows localized PL spectra taken from cells (red) and background (black), (c) superimposed image (bright field nude mouse image and spectrally unmixed PL image) [40]. (d) The schematic diagram of Nd3+/Yb3+ co-doped shell, (e) and (f) UC imaging of a nude mouse subcutaneously injected with Er@Nd NPs in vivo. The images were obtained with 980 nm laser (e) and 808 nm laser (f) irradiation, both with a power density of 200 mW/cm2. ROIs are denoted in black dot circles. Insert images were infrared thermal image of a nude mouse during continuous (e) 980 nm laser irradiation for 50s and (f) 808 nm laser irradiation for 300s [29] (Reprinted with permission from [29, 40 ]).
Fig. 5
Fig. 5 (a)-(b) Depth measurements of Yb3+/Tm3+ and Nd3+/Yb3+/Er3+: (a) a linear scale, and (c) a plot in semilogarithmic scale [44], (c)-(d) Multiphoton imaging of (c) 795-nm-excited UCNP (Inset: the SEM image of single UCNP on the coverslip) and (d) 975-nm-excited UCNP [25], (Reprinted with permission from [25, 44 ]).
Fig. 6
Fig. 6 (a) Gaussian fitting of four-photon fluorescence spot, FWHMIPSF = 161 nm (inset: the SEM image of a single Nd3+-UCNP sample and four-photon fluorescence imaging of a single Nd3+-UCNP). (b) UC fluorescence image of Nd3+-UCNPs (inset: bright field image), (d)-(f) the corresponding line-scanning profile from the image shown in (c) showing FWHM = 168 nm (730-nm/four-photon); FWHM = 250 nm (730-nm/two-photon); FWHM = 360 nm (980-nm/two-photon) (Reprinted with permission from [45]).
Fig. 7
Fig. 7 (a) The schematic diagram of the nanoplatform for photodynamic therapy and imaging [46], (b) Functionalization of core@shell@shell nanoparticles with photosensitizer Ce6, PEG, and cancer-targeting moiety folic acid (FA) for simultaneous imaging and PDT [47], (c) Photographs of excised tumors from euthanized mice, (d) Images of representative group [49] (Reprinted with permission from [46, 47, 49 ]).

Metrics