Abstract

The angular dependence of the diffraction efficiency of volume-type holographic gratings recorded in a single-domain light-sensitive liquid crystalline elastomer was investigated. Usually this dependence is expected to be very similar for intensity gratings and for polarization gratings. However, our measurements resolved a profound difference between the two types of the gratings: a typical Bragg peak of the diffraction efficiency is observed only for intensity gratings, while polarization gratings exhibit a profound dip at the Bragg angle. The appearance of this dip is explained by strongly anisotropic optical absorption of the actinic light during the recording process.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization modulation by means of tunable polarization gratings in an azobenzene side-chain liquid-crystalline polymer film

Ziyao Lyu, Changshun Wang, Yujia Pan, Yifei Yang, and Renjie Xia
Appl. Opt. 57(12) 3146-3153 (2018)

Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers

Manfred Eich and Joachim Wendorff
J. Opt. Soc. Am. B 7(8) 1428-1436 (1990)

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  2. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref] [PubMed]
  3. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
    [Crossref] [PubMed]
  4. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  5. X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008).
    [Crossref] [PubMed]
  6. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  7. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
    [Crossref] [PubMed]
  8. A. Shishido, “Rewritible holograms based on azobenzene-containing liquid-cystalline polymers,” Polym. J. 42(7), 525–533 (2010).
    [Crossref]
  9. H. Yu, “Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3047–3054 (2014).
    [Crossref]
  10. N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
    [Crossref]
  11. T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
    [Crossref]
  12. X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
    [Crossref]
  13. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
    [Crossref]
  14. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref] [PubMed]
  15. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
    [Crossref]
  16. B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
    [Crossref]
  17. W. Lee and C. C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17(1), 157–162 (2006).
    [Crossref]
  18. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
    [Crossref] [PubMed]
  19. D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe switching liquid crystal,” Opt. Express 23, 11274–11285 (2015).
  20. W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
    [Crossref]
  21. Y. Zhao, in Smart Light Responsive Materials – Azobenzene-Containing Polymers and Liquid Crystals, Y. Zhao, T. Ikeda, ed. (John Wiley & Sons, 2009).
  22. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, 2007).
  23. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
    [Crossref] [PubMed]
  24. P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, “UV manipulation of order and macroscopic shape in nematic elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041720 (2002).
    [Crossref] [PubMed]
  25. Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
    [Crossref] [PubMed]
  26. M. Warner and L. Mahadevan, “Photoinduced deformations of beams, plates, and films,” Phys. Rev. Lett. 92(13), 134302 (2004).
    [Crossref] [PubMed]
  27. N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28(8), 1916–1921 (2011).
    [Crossref]
  28. H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
    [Crossref]
  29. U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
    [Crossref] [PubMed]
  30. K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
    [Crossref]
  31. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
    [Crossref] [PubMed]
  32. H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
    [Crossref] [PubMed]
  33. S. Bai and Y. Zhao, “Azobenzene elastomers for mechanically tunable diffraction gratings,” Macromolecules 35(26), 9657–9664 (2002).
    [Crossref]
  34. Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13(10), 781–788 (2003).
    [Crossref]
  35. C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
    [Crossref]
  36. F. Ciuchi, A. Mazzulla, and G. Cipparrone, “Permanent polarization gratings in elastomer azo-dye systems: comparison of layered and mixed samples,” J. Opt. Soc. Am. B 19(11), 2531–2537 (2002).
    [Crossref]
  37. E. Sungur, M. H. Li, G. Taupier, A. Boeglin, M. Romeo, S. Méry, P. Keller, and K. D. Dorkenoo, “External stimulus driven variable-step grating in a nematic elastomer,” Opt. Express 15(11), 6784–6789 (2007).
    [Crossref] [PubMed]
  38. M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
    [Crossref] [PubMed]
  39. V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
    [Crossref]
  40. M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
    [Crossref] [PubMed]
  41. M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
    [Crossref] [PubMed]
  42. B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
    [Crossref]
  43. M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
    [Crossref]
  44. J. Küpfer and H. Finkelmann, “Nematic liquid single-crystal elastomers,” Makromol. Chem., Rapid. Commun. 12(12), 717–726 (1991).
    [Crossref]
  45. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
    [Crossref] [PubMed]
  46. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University Press, 2009).
  47. F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
    [Crossref] [PubMed]
  48. M. Xu, D. K. G. de Boer, C. M. van Heesch, A. J. H. Wachters, and H. P. Urbach, “Photoanisotropic polarization gratings beyond the small recording angle regime,” Opt. Express 18(7), 6703–6721 (2010).
    [Crossref] [PubMed]
  49. C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
    [Crossref] [PubMed]
  50. C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14(24), 11870–11884 (2006).
    [Crossref] [PubMed]
  51. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
    [Crossref]
  52. H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
    [Crossref]
  53. F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
    [Crossref]
  54. M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe switching liquid crystal,” Opt. Express 23, 11274–11285 (2015).

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

2014 (3)

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

H. Yu, “Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3047–3054 (2014).
[Crossref]

S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
[Crossref] [PubMed]

2013 (2)

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

2012 (1)

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

2011 (3)

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28(8), 1916–1921 (2011).
[Crossref]

2010 (3)

A. Shishido, “Rewritible holograms based on azobenzene-containing liquid-cystalline polymers,” Polym. J. 42(7), 525–533 (2010).
[Crossref]

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

M. Xu, D. K. G. de Boer, C. M. van Heesch, A. J. H. Wachters, and H. P. Urbach, “Photoanisotropic polarization gratings beyond the small recording angle regime,” Opt. Express 18(7), 6703–6721 (2010).
[Crossref] [PubMed]

2009 (5)

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (4)

E. Sungur, M. H. Li, G. Taupier, A. Boeglin, M. Romeo, S. Méry, P. Keller, and K. D. Dorkenoo, “External stimulus driven variable-step grating in a nematic elastomer,” Opt. Express 15(11), 6784–6789 (2007).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref] [PubMed]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

2006 (6)

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[Crossref]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

W. Lee and C. C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17(1), 157–162 (2006).
[Crossref]

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14(24), 11870–11884 (2006).
[Crossref] [PubMed]

2004 (2)

M. Warner and L. Mahadevan, “Photoinduced deformations of beams, plates, and films,” Phys. Rev. Lett. 92(13), 134302 (2004).
[Crossref] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

2003 (2)

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13(10), 781–788 (2003).
[Crossref]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[Crossref] [PubMed]

2002 (4)

P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, “UV manipulation of order and macroscopic shape in nematic elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041720 (2002).
[Crossref] [PubMed]

F. Ciuchi, A. Mazzulla, and G. Cipparrone, “Permanent polarization gratings in elastomer azo-dye systems: comparison of layered and mixed samples,” J. Opt. Soc. Am. B 19(11), 2531–2537 (2002).
[Crossref]

S. Bai and Y. Zhao, “Azobenzene elastomers for mechanically tunable diffraction gratings,” Macromolecules 35(26), 9657–9664 (2002).
[Crossref]

B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
[Crossref]

2001 (2)

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
[Crossref]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[Crossref] [PubMed]

1996 (1)

1994 (1)

F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
[Crossref] [PubMed]

1991 (1)

J. Küpfer and H. Finkelmann, “Nematic liquid single-crystal elastomers,” Makromol. Chem., Rapid. Commun. 12(12), 717–726 (1991).
[Crossref]

1985 (1)

1984 (2)

Alcala, R.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
[Crossref]

Ambrožic, G.

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

Andruzzi, F.

Asatryan, K.

Bai, S.

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13(10), 781–788 (2003).
[Crossref]

S. Bai and Y. Zhao, “Azobenzene elastomers for mechanically tunable diffraction gratings,” Macromolecules 35(26), 9657–9664 (2002).
[Crossref]

Boeglin, A.

Bunning, T. J.

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[Crossref] [PubMed]

Burresi, M.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Cai, P.

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

Camacho-Lopez, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Chen, P.

Chi, S.

Chigrinov, V.

Cho, S. L.

Choi, D. H.

B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
[Crossref]

Chou, S. F.

Cipparrone, G.

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

F. Ciuchi, A. Mazzulla, and G. Cipparrone, “Permanent polarization gratings in elastomer azo-dye systems: comparison of layered and mixed samples,” J. Opt. Soc. Am. B 19(11), 2531–2537 (2002).
[Crossref]

Ciuchi, F.

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[Crossref]

Copic, M.

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[Crossref]

Dawson, N. J.

de Boer, D. K. G.

Devetak, M.

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

Domenici, V.

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

Dorkenoo, K. D.

Drevenšek-Olenik, I.

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

Duan, W.

Emoto, A.

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
[Crossref]

Escuti, M. J.

Fally, M.

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

Finkelmann, H.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[Crossref] [PubMed]

J. Küpfer and H. Finkelmann, “Nematic liquid single-crystal elastomers,” Makromol. Chem., Rapid. Commun. 12(12), 717–726 (1991).
[Crossref]

Galstian, T.

Ge, S. J.

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[Crossref]

Goto, K.

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

Gregorc, M.

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

Hogan, P. M.

P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, “UV manipulation of order and macroscopic shape in nematic elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041720 (2002).
[Crossref] [PubMed]

Höhne, J.

F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
[Crossref] [PubMed]

Hoke, L.

Hrozhyk, U.

Hsu, K. Y.

Hu, W.

Hvilsted, S.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
[Crossref]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
[Crossref] [PubMed]

Ikeda, T.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref] [PubMed]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[Crossref] [PubMed]

Ishiguro, M.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref] [PubMed]

Ivanov, M.

Jiang, H. Y.

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

Kahmann, F.

F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
[Crossref] [PubMed]

Kawatsuki, N.

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
[Crossref]

Kelch, S.

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

Keller, P.

Kim, B. J.

B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
[Crossref]

Kimball, B. R.

Koerner, H.

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

Kondo, M.

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

Küpfer, J.

J. Küpfer and H. Finkelmann, “Nematic liquid single-crystal elastomers,” Makromol. Chem., Rapid. Commun. 12(12), 717–726 (1991).
[Crossref]

Kuzyk, M. G.

Lebar, A.

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

Lee, C. C.

W. Lee and C. C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17(1), 157–162 (2006).
[Crossref]

Lee, K. M.

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

Lee, S. D.

B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
[Crossref]

Lee, W.

W. Lee and C. C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17(1), 157–162 (2006).
[Crossref]

Lendlein, A.

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

Li, H.

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

Li, M. H.

Li, W.

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

Liang, X.

Lin, C. M.

Lin, J. H.

Lin, S. H.

Lu, Y. Q.

Luchette, P.

Mahadevan, L.

M. Warner and L. Mahadevan, “Photoinduced deformations of beams, plates, and films,” Phys. Rev. Lett. 92(13), 134302 (2004).
[Crossref] [PubMed]

Martella, D.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Matsumoto, T.

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

Mazzulla, A.

Méry, S.

Nakano, M.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[Crossref] [PubMed]

Neal, J.

Nersisyan, S.

Nersisyan, S. R.

Nikolova, L.

Nishikawa, E.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[Crossref] [PubMed]

Noda, K.

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

Oh, C.

Ono, H.

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
[Crossref]

Oriol, L.

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

Pagliusi, P.

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Palffy-Muhoray, P.

Pan, X.

X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008).
[Crossref] [PubMed]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

Pankrath, R.

F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
[Crossref] [PubMed]

Park, S. Y.

B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
[Crossref]

Parmeggiani, C.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Pelcovits, R. A.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[Crossref]

Pereira, G. G.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[Crossref] [PubMed]

Piñol, M.

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Qin, M.

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

Ramanujam, P. S.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
[Crossref]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
[Crossref] [PubMed]

Romeo, M.

Royes, J.

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

Rupp, R. A.

F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
[Crossref] [PubMed]

Sanchez, C.

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
[Crossref]

Sánchez-Ferrer, A.

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

Sasaki, T.

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

Sato, D.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref] [PubMed]

Sekiguchi, T.

H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
[Crossref]

Serak, S.

Shelley, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Shioda, T.

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
[Crossref]

Shishido, A.

A. Shishido, “Rewritible holograms based on azobenzene-containing liquid-cystalline polymers,” Polym. J. 42(7), 525–533 (2010).
[Crossref]

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref] [PubMed]

Shoho, T.

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

Smith, M. L.

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

Steeves, D. M.

Stoyanova, K.

Sungur, E.

Tabiryan, N.

Tabiryan, N. V.

Tajbakhsh, A. R.

P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, “UV manipulation of order and macroscopic shape in nematic elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041720 (2002).
[Crossref] [PubMed]

Tan, G.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe switching liquid crystal,” Opt. Express 23, 11274–11285 (2015).

Tašic, B.

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

Taupier, G.

Terentjev, E. M.

P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, “UV manipulation of order and macroscopic shape in nematic elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041720 (2002).
[Crossref] [PubMed]

Todorov, T.

Tomova, N.

Umek, P.

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

Urbach, H. P.

Vaia, R. A.

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

van Heesch, C. M.

Wachters, A. J. H.

Wang, C.

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008).
[Crossref] [PubMed]

X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008).
[Crossref] [PubMed]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

Warner, M.

M. Warner and L. Mahadevan, “Photoinduced deformations of beams, plates, and films,” Phys. Rev. Lett. 92(13), 134302 (2004).
[Crossref] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[Crossref] [PubMed]

Wasylczyk, P.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Wei, B. Y.

White, T. J.

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[Crossref] [PubMed]

Wiersma, D. S.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Wu, S. T.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe switching liquid crystal,” Opt. Express 23, 11274–11285 (2015).

Xu, D.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe switching liquid crystal,” Opt. Express 23, 11274–11285 (2015).

Xu, H.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

Xu, M.

Yamashita, A.

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

Yu, H.

H. Yu, “Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3047–3054 (2014).
[Crossref]

Yu, Y.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[Crossref] [PubMed]

Zalar, B.

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Zeng, P.

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

Zhang, X.

X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008).
[Crossref] [PubMed]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

Zhao, F.

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13(10), 781–788 (2003).
[Crossref]

S. Bai and Y. Zhao, “Azobenzene elastomers for mechanically tunable diffraction gratings,” Macromolecules 35(26), 9657–9664 (2002).
[Crossref]

Žigon, M.

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

Zupancic, B.

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

Adv. Funct. Mater. (2)

K. M. Lee, M. L. Smith, H. Koerner, N. Tabiryan, R. A. Vaia, T. J. Bunning, and T. J. White, “Photodriven flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks,” Adv. Funct. Mater. 21(15), 2913–2918 (2011).
[Crossref]

Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13(10), 781–788 (2003).
[Crossref]

Adv. Mater. (3)

H. Y. Jiang, S. Kelch, and A. Lendlein, “Polymers move in response to light,” Adv. Mater. 18(11), 1471–1475 (2006).
[Crossref]

B. J. Kim, S. D. Lee, S. Y. Park, and D. H. Choi, “Unusual characteristics of diffraction gratings in a liquid crystal cell,” Adv. Mater. 14(13-14), 983–988 (2002).
[Crossref]

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (2)

T. Sasaki, T. Shoho, K. Goto, K. Noda, N. Kawatsuki, and H. Ono, “Photoalignment and resulting holographic vector grating formation in composites of low molecular weight liquid crystals and photoreactive liquid crystalline polymers,” Appl. Phys. B 120(2), 217–222 (2015).
[Crossref]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86(4), 693–697 (2007).
[Crossref]

Appl. Phys. Lett. (3)

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[Crossref]

C. Sanchez, R. Alcala, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78(25), 3944–3946 (2001).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Yu, “Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3047–3054 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

C. Provenzano, P. Pagliusi, G. Cipparrone, J. Royes, M. Piñol, and L. Oriol, “Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences,” J. Phys. Chem. B 118(40), 11849–11854 (2014).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47(10), 7963–7967 (2008).
[Crossref]

Langmuir (1)

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref] [PubMed]

Macromol. Chem. Phys. (1)

B. Tašič, W. Li, A. Sánchez-Ferrer, M. Čopič, and I. Drevenšek-Olenik, “Light-induced refractive index modulation in photoactive liquid-crystalline elastomers,” Macromol. Chem. Phys. 214(23), 2744–2751 (2013).
[Crossref]

Macromolecules (1)

S. Bai and Y. Zhao, “Azobenzene elastomers for mechanically tunable diffraction gratings,” Macromolecules 35(26), 9657–9664 (2002).
[Crossref]

Makromol. Chem., Rapid. Commun. (1)

J. Küpfer and H. Finkelmann, “Nematic liquid single-crystal elastomers,” Makromol. Chem., Rapid. Commun. 12(12), 717–726 (1991).
[Crossref]

Materials (Basel) (1)

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Kinetics of holographic recording and erasure processes in light-sensitive liquid crystal elastomers,” Materials (Basel) 5(12), 741–753 (2012).
[Crossref]

Nanotechnology (1)

W. Lee and C. C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17(1), 157–162 (2006).
[Crossref]

Nat. Mater. (1)

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Nature (1)

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Zhao, C. Wang, M. Qin, P. Zeng, and P. Cai, “Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence,” Opt. Commun. 338, 461–466 (2015).
[Crossref]

Opt. Express (9)

M. Xu, D. K. G. de Boer, C. M. van Heesch, A. J. H. Wachters, and H. P. Urbach, “Photoanisotropic polarization gratings beyond the small recording angle regime,” Opt. Express 18(7), 6703–6721 (2010).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14(24), 11870–11884 (2006).
[Crossref] [PubMed]

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[Crossref] [PubMed]

E. Sungur, M. H. Li, G. Taupier, A. Boeglin, M. Romeo, S. Méry, P. Keller, and K. D. Dorkenoo, “External stimulus driven variable-step grating in a nematic elastomer,” Opt. Express 15(11), 6784–6789 (2007).
[Crossref] [PubMed]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
[Crossref] [PubMed]

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe switching liquid crystal,” Opt. Express 23, 11274–11285 (2015).

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

Phys. Rev. B Condens. Matter (1)

F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B Condens. Matter 50(4), 2474–2478 (1994).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

M. Gregorc, B. Zalar, V. Domenici, G. Ambrožič, I. Drevenšek-Olenik, M. Fally, and M. Čopič, “Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 031707 (2011).
[Crossref] [PubMed]

M. Gregorc, H. Li, V. Domenici, G. Ambrožič, M. Čopič, and I. Drevenšek-Olenik, “Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022507 (2013).
[Crossref] [PubMed]

M. Devetak, B. Zupančič, A. Lebar, P. Umek, B. Zalar, V. Domenici, G. Ambrožič, M. Žigon, M. Čopič, and I. Drevenšek-Olenik, “Micropatterning of light-sensitive liquid-crystal elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 050701 (2009).
[Crossref] [PubMed]

P. M. Hogan, A. R. Tajbakhsh, and E. M. Terentjev, “UV manipulation of order and macroscopic shape in nematic elastomers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041720 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

M. Warner and L. Mahadevan, “Photoinduced deformations of beams, plates, and films,” Phys. Rev. Lett. 92(13), 134302 (2004).
[Crossref] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001).
[Crossref] [PubMed]

Polym. J. (1)

A. Shishido, “Rewritible holograms based on azobenzene-containing liquid-cystalline polymers,” Polym. J. 42(7), 525–533 (2010).
[Crossref]

Polymer (Guildf.) (2)

N. Kawatsuki, A. Yamashita, M. Kondo, T. Matsumoto, T. Shioda, A. Emoto, and H. Ono, “Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence,” Polymer (Guildf.) 51(13), 2849–2856 (2010).
[Crossref]

V. Domenici, G. Ambrožič, M. Čopič, A. Lebar, I. Drevenšek-Olenik, P. Umek, B. Zalar, B. Zupančič, and M. Žigon, “Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units,” Polymer (Guildf.) 50(20), 4837–4844 (2009).
[Crossref]

Other (3)

Y. Zhao, in Smart Light Responsive Materials – Azobenzene-Containing Polymers and Liquid Crystals, Y. Zhao, T. Ikeda, ed. (John Wiley & Sons, 2009).

M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, 2007).

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic drawings of the recording configuration for parallel polarization combination (a) and for perpendicular polarization combination (b), respectively.
Fig. 2
Fig. 2 Absorbance (at 351 nm) of planarly aligned samples of pure E7 and of E7 mixed with 1 wt% of J7 azomesogens as a function of polarization direction of the linearly polarized incident optical beam (a). Difference ΔA between the absorbances of both samples (b). Vertical arrows in the centre denote the orientation of the nematic director n.
Fig. 3
Fig. 3 Diffraction efficiency of the ± 1st diffraction orders as a function of deviation from the Bragg angle for a grating recorded by parallel polarization states (a) and for a grating recorded by perpendicular polarization states (b). Polarization states of the recording and readout (probe) beams are denoted in the images. The red solid line in (b) is the result of a theoretical simulation described in detail in Section 3.
Fig. 4
Fig. 4 Diffraction efficiencies of the ± 1st diffraction orders as a function of deviation from the Bragg angle for a grating recorded by perpendicularly polarized recording beams (s + p) and readout by s (squares) and by p polarized (circles) probe beams, respectively.
Fig. 5
Fig. 5 Optical interference field of s and p polarized optical beams as a function of sample depth (see also Fig. 1). Due to linear dichroism the amplitude of the e-e sub-pattern (polarization at −45° with respect to x axis) decreases with sample depth (z axis) much faster than the amplitude of the o-o sub-pattern (polarization at + 45° with respect to x axis). The direction of nematic director n is designated on the left side at the bottom of the image.
Fig. 6
Fig. 6 Calculated intensity profiles of extraordinarily and ordinarily polarized optical fields as a function of sample depth for increasing recording times. The recording time linearly increases from tr = 10 s (upper segment) to tr = 140 s (bottom segment). The profile corresponding to one period Λ of the interference pattern is shown in each segment. The ordinarily polarized field penetrates deeper into the sample than the extraordinarily polarized field. Its maxima and minima are shifted for Λ/2 with respect to the extraordinarily polarized field.
Fig. 7
Fig. 7 Modulation of anisotropy of the real part of the optical dielectric tensor as a function of sample depth for different recording times. The relative recording times are denoted in the inset. The resulting calculated angular dependence of the diffraction efficiency of the ± 1st diffraction orders for tr = 100 s is shown as a thick solid line in Fig. 3(b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η i = I i I 1 + I 0 + I +1 ,
d c t dt =[ γ t c t ( σ t,e | ψ e | 2 + σ t,o | ψ o | 2 )+ γ c (1 c t ) σ c ( | ψ e | 2 + | ψ o | 2 ) ]+ (1 c t ) τ ,
ε e '' =[ c t σ t,e +(1 c t ) σ c ]/ k 0 , ε o '' =[ c t σ t,o +(1 c t ) σ c ]/ k 0 ,
Δε(x,z)= ε e ' ε o ' = ε a +Δ ε 1 (z) cos( K g x),
η | 0 L Δ ε 1 (z) e i K g Δθz dz | 2 ,

Metrics