Abstract

Nanosecond single and multiple pulses laser damage studies on electro-optic transparent ceramic PLZT ceramic are performed. The evolution of damage morphology and damage probability threshold under multiple irradiations reveals that fatigue effects are affected by both laser fluence and shot numbers. The bulk damage is caused by themal explosion and self-focusing. Femtosecond single and multiple pulses are also employed to irradiate on the sample. Nonlinear absorption property of sample is studied to analyze different damage mechanism. Investigations on laser-induced damage in PLZT are of high practical importance for high-power laser applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm

Wenwen Liu, Chaoyang Wei, Jianbo Wu, Zhenkun Yu, Hui Cui, Kui Yi, and Jianda Shao
Opt. Express 21(19) 22476-22487 (2013)

Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector

Lei Yuan, Yuanan Zhao, Guangqiang Shang, Chengren Wang, Hongbo He, Jianda Shao, and Zhengxiu Fan
J. Opt. Soc. Am. B 24(3) 538-543 (2007)

Bulk laser-induced damage threshold of titanium-doped sapphire crystals

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J.-Y. Natoli, and J.-P. Chambaret
Appl. Opt. 51(32) 7826-7833 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).
  2. W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
    [Crossref]
  3. Y. H. Wang, J. F. Wang, Y. E. Jiang, Y. Bao, X. C. Li, and Z. Q. Lin, “Laser pulse spectral shaping based on electro-optic modulation,” Chin. Opt. Lett. 6(11), 841–844 (2008).
    [Crossref]
  4. M. Veithen, X. Gonze, and P. Ghosez, “First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides,” Phys. Rev. Lett. 93(18), 187401 (2004).
    [Crossref] [PubMed]
  5. K. Uchino, “Electro-optic ceramics and their display applications,” Ceram. Int. 21(5), 309–315 (1995).
    [Crossref]
  6. G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75(1), 25–55 (1987).
    [Crossref]
  7. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
    [Crossref]
  8. G. H. Haertling and C. E. Land, “Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54(1), 1–11 (1971).
    [Crossref]
  9. L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).
  10. Q. Lei, Y. Qing, J. Gan, H. Cai, and R. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun. 284(16-17), 3886–3890 (2011).
    [Crossref]
  11. K. K. Li, “Electro-optic ceramics and devices, PMNT,” US Patent Application. 10/139857, 5/6/2002.
  12. Q. Ye, Z. Dong, Z. Fang, and R. Qu, “Experimental investigation of optical beam deflection based on PLZT electro-optic ceramic,” Opt. Express 15(25), 16933–16944 (2007).
    [Crossref] [PubMed]
  13. Q. Ye, L. Qiao, H. Cai, and R. Qu, “High-efficiency electrically tunable phase diffraction grating based on a transparent lead magnesium niobate-lead titanite electro-optic ceramic,” Opt. Lett. 36(13), 2453–2455 (2011).
    [Crossref] [PubMed]
  14. Q. Ye, L. Qiao, J. Gan, H. Cai, and R. Qu, “Fiber Sagnac π-shifted interferometer for a polarization-independent PMNT high-speed electro-optic switch,” Opt. Lett. 35(24), 4187–4189 (2010).
    [Crossref] [PubMed]
  15. X. J. Zhang, Q. Ye, H. W. Cai, and R. H. Qu, “Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer,” Opt. Laser Technol. 57, 5–8 (2014).
    [Crossref]
  16. R. M. O’Connell, T. F. Deaton, and T. T. Saito, “Single- and multiple-shot laser-damaged properties of commercial grade PMMA,” Appl. Opt. 23(5), 682–688 (1984).
    [Crossref] [PubMed]
  17. P. K. Bandyopadhyay and L. D. Merkle, “Laser-induced damage in quartz: A study of the influence of impurities and defects,” J. Appl. Phys. 63(5), 1392–1398 (1988).
    [Crossref]
  18. L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55(3), 772–775 (1984).
    [Crossref]
  19. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [Crossref]
  20. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [Crossref]
  21. L. Gallais, J. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
    [Crossref] [PubMed]
  22. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  23. W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
    [Crossref]
  24. J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
    [Crossref]
  25. L. Yan, C. Wei, D. Li, G. Hu, K. Yi, and Z. Fan, “Coupling effect of multi-wavelength lasers in damage performance of beam splitters at 355 nm and 1064 nm,” Appl. Opt. 51(16), 3243–3249 (2012).
    [Crossref] [PubMed]
  26. M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  27. H. Yan and J. S. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photon. Res. 2(2), 51–58 (2014).
    [Crossref]
  28. F. R. Wagner, C. Gouldieff, and J. Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
    [Crossref] [PubMed]
  29. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
    [Crossref]
  30. C. Gouldieff, F. Wagner, and J. Y. Natoli, “Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study,” Opt. Express 23(3), 2962–2972 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

H. Yan and J. S. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photon. Res. 2(2), 51–58 (2014).
[Crossref]

X. J. Zhang, Q. Ye, H. W. Cai, and R. H. Qu, “Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer,” Opt. Laser Technol. 57, 5–8 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

Q. Ye, L. Qiao, H. Cai, and R. Qu, “High-efficiency electrically tunable phase diffraction grating based on a transparent lead magnesium niobate-lead titanite electro-optic ceramic,” Opt. Lett. 36(13), 2453–2455 (2011).
[Crossref] [PubMed]

Q. Lei, Y. Qing, J. Gan, H. Cai, and R. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun. 284(16-17), 3886–3890 (2011).
[Crossref]

2010 (3)

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

Q. Ye, L. Qiao, J. Gan, H. Cai, and R. Qu, “Fiber Sagnac π-shifted interferometer for a polarization-independent PMNT high-speed electro-optic switch,” Opt. Lett. 35(24), 4187–4189 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (2)

Q. Ye, Z. Dong, Z. Fang, and R. Qu, “Experimental investigation of optical beam deflection based on PLZT electro-optic ceramic,” Opt. Express 15(25), 16933–16944 (2007).
[Crossref] [PubMed]

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

2005 (1)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

2004 (2)

M. Veithen, X. Gonze, and P. Ghosez, “First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides,” Phys. Rev. Lett. 93(18), 187401 (2004).
[Crossref] [PubMed]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

2003 (1)

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

2002 (1)

1998 (1)

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

1997 (1)

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1995 (1)

K. Uchino, “Electro-optic ceramics and their display applications,” Ceram. Int. 21(5), 309–315 (1995).
[Crossref]

1990 (1)

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (1)

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

1988 (1)

P. K. Bandyopadhyay and L. D. Merkle, “Laser-induced damage in quartz: A study of the influence of impurities and defects,” J. Appl. Phys. 63(5), 1392–1398 (1988).
[Crossref]

1987 (1)

G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75(1), 25–55 (1987).
[Crossref]

1984 (2)

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55(3), 772–775 (1984).
[Crossref]

R. M. O’Connell, T. F. Deaton, and T. T. Saito, “Single- and multiple-shot laser-damaged properties of commercial grade PMMA,” Appl. Opt. 23(5), 682–688 (1984).
[Crossref] [PubMed]

1971 (1)

G. H. Haertling and C. E. Land, “Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54(1), 1–11 (1971).
[Crossref]

Amra, C.

Anthony, W. Y.

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

Bahae, M. S.

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Bahr, H.-A.

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Bandyopadhyay, P. K.

P. K. Bandyopadhyay and L. D. Merkle, “Laser-induced damage in quartz: A study of the influence of impurities and defects,” J. Appl. Phys. 63(5), 1392–1398 (1988).
[Crossref]

Bao, Y.

Bass, M.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55(3), 772–775 (1984).
[Crossref]

Bisson, J.-F.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Cai, H.

Cai, H. W.

X. J. Zhang, Q. Ye, H. W. Cai, and R. H. Qu, “Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer,” Opt. Laser Technol. 57, 5–8 (2014).
[Crossref]

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Chen, Q.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

David, J. H.

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

Deaton, T. F.

Ding, A.

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

Dong, Z.

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Fan, Z.

Fang, Z.

Feit, M. D.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Feng, Y.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Gallais, L.

Gan, J.

Q. Lei, Y. Qing, J. Gan, H. Cai, and R. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun. 284(16-17), 3886–3890 (2011).
[Crossref]

Q. Ye, L. Qiao, J. Gan, H. Cai, and R. Qu, “Fiber Sagnac π-shifted interferometer for a polarization-independent PMNT high-speed electro-optic switch,” Opt. Lett. 35(24), 4187–4189 (2010).
[Crossref] [PubMed]

Ghosez, P.

M. Veithen, X. Gonze, and P. Ghosez, “First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides,” Phys. Rev. Lett. 93(18), 187401 (2004).
[Crossref] [PubMed]

Gonze, X.

M. Veithen, X. Gonze, and P. Ghosez, “First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides,” Phys. Rev. Lett. 93(18), 187401 (2004).
[Crossref] [PubMed]

Gouldieff, C.

Haertling, G. H.

G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75(1), 25–55 (1987).
[Crossref]

G. H. Haertling and C. E. Land, “Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54(1), 1–11 (1971).
[Crossref]

Hagan, D. J.

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hu, G.

James, B. A.

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

Jiang, H.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Jiang, Y. E.

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Kamzina, L. S.

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Kirchhoff, G.

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Koumvakalis, N.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55(3), 772–775 (1984).
[Crossref]

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Land, C. E.

G. H. Haertling and C. E. Land, “Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54(1), 1–11 (1971).
[Crossref]

Langmeier, P.

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Lei, Q.

Q. Lei, Y. Qing, J. Gan, H. Cai, and R. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun. 284(16-17), 3886–3890 (2011).
[Crossref]

Li, C.

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Li, D.

Li, G.

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

Li, K. K.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Li, R.

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Li, X. C.

Lin, Z. Q.

Lu, J.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Merkle, L. D.

P. K. Bandyopadhyay and L. D. Merkle, “Laser-induced damage in quartz: A study of the influence of impurities and defects,” J. Appl. Phys. 63(5), 1392–1398 (1988).
[Crossref]

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55(3), 772–775 (1984).
[Crossref]

Michael, A. K.

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

Ming, H.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Natoli, J.

Natoli, J. Y.

Nichols, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

O’Connell, R. M.

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Pflugbeil, I.

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Pompe, W.

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Qiao, L.

Qing, Y.

Q. Lei, Y. Qing, J. Gan, H. Cai, and R. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun. 284(16-17), 3886–3890 (2011).
[Crossref]

Qu, R.

Qu, R. H.

X. J. Zhang, Q. Ye, H. W. Cai, and R. H. Qu, “Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer,” Opt. Laser Technol. 57, 5–8 (2014).
[Crossref]

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Said, A. A.

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Saito, T. T.

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Shen, X. A.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Shirakawa, A.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Su, G. Z.

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Sun, X.

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

Tang, L.

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Thomas, I.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Uchino, K.

K. Uchino, “Electro-optic ceramics and their display applications,” Ceram. Int. 21(5), 309–315 (1995).
[Crossref]

Ueda, K.-I.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Van Stryland, E. W.

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Veithen, M.

M. Veithen, X. Gonze, and P. Ghosez, “First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides,” Phys. Rev. Lett. 93(18), 187401 (2004).
[Crossref] [PubMed]

Wagner, F.

Wagner, F. R.

Wang, C.

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Wang, J. F.

Wang, Y.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Wang, Y. H.

Wei, C.

Wei, J. S.

Wei, R.

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

Wei, T. H.

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Weiss, H.-J.

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Yagi, H.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Yan, H.

Yan, L.

Yanaitani, T.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Ye, Q.

Yi, K.

Yoneda, H.

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Zeng, J.

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

Zhang, K.

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Zhang, R.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Zhang, X. J.

X. J. Zhang, Q. Ye, H. W. Cai, and R. H. Qu, “Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer,” Opt. Laser Technol. 57, 5–8 (2014).
[Crossref]

Zheng, Z.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Zou, Y. K.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Appl. Opt. (2)

Ceram. Int. (1)

K. Uchino, “Electro-optic ceramics and their display applications,” Ceram. Int. 21(5), 309–315 (1995).
[Crossref]

Chin. Opt. Lett. (1)

Ferroelectrics (1)

G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75(1), 25–55 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Ceram. Soc. (1)

G. H. Haertling and C. E. Land, “Hot-Pressed (Pb, La) (Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications,” J. Am. Ceram. Soc. 54(1), 1–11 (1971).
[Crossref]

J. Appl. Phys. (2)

P. K. Bandyopadhyay and L. D. Merkle, “Laser-induced damage in quartz: A study of the influence of impurities and defects,” J. Appl. Phys. 63(5), 1392–1398 (1988).
[Crossref]

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532 and 0.355 μm,” J. Appl. Phys. 55(3), 772–775 (1984).
[Crossref]

Jpn. J. Appl. Phys. (1)

J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanaitani, and K.-I. Ueda, “Laser Damage Threshold of Ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), 1025–1027 (2003).
[Crossref]

Magnetism and Ferroelectricity (1)

L. S. Kamzina, R. Wei, G. Li, J. Zeng, and A. Ding, “Electro-optical properties of PMN-xPT compounds: single crystrals and transparent ferroelectric ceramic,” Magnetism and Ferroelectricity 52, 2142–2146 (2010).

Mater. Sci. Eng. A (1)

W. Pompe, H.-A. Bahr, I. Pflugbeil, G. Kirchhoff, P. Langmeier, and H.-J. Weiss, “Laser induced creep and fracture in ceramics,” Mater. Sci. Eng. A 233(1-2), 167–175 (1997).
[Crossref]

Opt. Commun. (1)

Q. Lei, Y. Qing, J. Gan, H. Cai, and R. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun. 284(16-17), 3886–3890 (2011).
[Crossref]

Opt. Eng. (1)

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

X. J. Zhang, Q. Ye, H. W. Cai, and R. H. Qu, “Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer,” Opt. Laser Technol. 57, 5–8 (2014).
[Crossref]

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Veithen, X. Gonze, and P. Ghosez, “First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides,” Phys. Rev. Lett. 93(18), 187401 (2004).
[Crossref] [PubMed]

Proc. SPIE (4)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

W. Y. Anthony, A. K. Michael, J. H. David, B. A. James, and X. Sun, “Spaceborne laser instruments for high-resolution mapping,” Proc. SPIE 7578, 757802 (2010).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

Science & Technology Review (1)

R. Li, C. Wang, G. Z. Su, K. Zhang, L. Tang, and C. Li, “Development and applications of spaceborne LiDAR,” Science & Technology Review 25, 58–63 (2007).

Other (1)

K. K. Li, “Electro-optic ceramics and devices, PMNT,” US Patent Application. 10/139857, 5/6/2002.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

1-on-1 damage threshold of ceramic surface with nanosecond laser irradiation, blue line is linear fitting result. A wavelength of 1064 nm, with a pulse length of 12 ns and a repetition rate of 5 kHz.

Fig. 2
Fig. 2

(a)Damage depth and (b)diameter versus incident power and pulse number. A wavelength of 800 nm, with a pulse length of 40 fs and a repetition rate of 1 kHz.

Fig. 3
Fig. 3

(a): Z-scan curves at different incident pulse energies of the sample. The solid lines are the fitting results. (b): Fitting results of normalized transmission as a function of input laser intensity. A wavelength of 515 nm, with a pulse length of 340 fs and a repetition rate of 100 Hz

Fig. 4
Fig. 4

(a)Gray Hazelet damage, (b)polishing layer damage and (c)big craters damage morphologies

Fig. 5
Fig. 5

(a)Damage morphology on PLZT surface of 15.6 J/cm2 ; (b)3-dimension figure of (a); (c)SEM picture of grain structure of PLZT; (d)SEM picture of grain boundary.

Fig. 6
Fig. 6

Comparison of damage morphologies of samples with LIDT of 5.8J/cm2, 3.9J/cm2 and 2.1J/cm2.

Fig. 7
Fig. 7

Images after successive shots in the bulk of PLZT ceramic. Laser focused on surface of (a); inside the sample of (b), (c) and (d).

Fig. 8
Fig. 8

Femtosecond laser induced damge morphologis with single pulse and 10 pulses under different energy levels.

Fig. 9
Fig. 9

Damage morphologies with different pulse number(P = 25mw).

Tables (2)

Tables Icon

Table 1 Laser Parameters in damage test

Tables Icon

Table 2 Damage probability in PLZT ceramic after i shots (Pi), with i = 1, 10, 100 or 300. A wavelength of 1064nm, with a pulse length of 12ns and a repetition rate of 5Hz.

Metrics