Abstract

Ce3+/Cr3+ co-doped LaAlO3 for near-infrared (NIR) long lasting phosphors were synthesized through solid-state reaction. Incorporation of Ce3+ ions into Cr3+-doped LaAlO3 significantly enhanced the NIR persistent luminescence by more than one order of magnitude compared with LaAlO3 doped with Cr3+. Detailed analysis of the photoluminescence, photoluminescence excitation, and Thermo-luminescence spectra, as well as the persistent decay behavior of Ce3+/Cr3+ co-doped LaAlO3, indicated that the improvement of NIR persistent luminescence at around 735 nm (Cr3+: 2E→4A2 transition) is not only originated from a persistent energy transfer process from Ce3+ ions to Cr3+ ions, but also attributed to the extra efficient traps created by incorporation of Ce3+ ions. The current work develops an alternative approach toward the efficient NIR Cr3+-doped non-gallate long-persistence phosphors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite

Yumiko Katayama, Hiroaki Kobayashi, Jumpei Ueda, Bruno Viana, and Setsuhisa Tanabe
Opt. Mater. Express 6(5) 1500-1505 (2016)

La3GaGe5O16:Cr3+ phosphor: the near-infrared persistent luminescence

Shaoan Zhang, Yihua Hu, Li Chen, Yinrong Fu, and Guifang Ju
Opt. Mater. Express 6(4) 1247-1255 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
    [Crossref]
  2. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
    [Crossref]
  3. B. Liu, C. Shi, and Z. Qi, “Potential white-light long-lasting phosphor: Dy3+-doped aluminate,” Appl. Phys. Lett. 86(19), 191111 (2005).
    [Crossref]
  4. C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
    [Crossref] [PubMed]
  5. H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
    [Crossref] [PubMed]
  6. R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
    [Crossref]
  7. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
    [Crossref] [PubMed]
  8. V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
    [Crossref] [PubMed]
  9. Z. Li, J. Shi, H. Zhang, and M. Sun, “Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo,” Opt. Express 22(9), 10509–10518 (2014).
    [Crossref] [PubMed]
  10. R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
    [Crossref] [PubMed]
  11. A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
    [Crossref] [PubMed]
  12. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  13. Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
    [Crossref] [PubMed]
  14. Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
    [Crossref]
  15. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  16. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  17. M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
    [Crossref]
  18. Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).
  19. J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
    [Crossref]
  20. A. Watras, R. Pązik, and P. J. Dereń, “Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc),” J. Lumin. 133, 35–38 (2013).
    [Crossref]
  21. R. Gillen, S. J. Clark, and J. Robertson, “Nature of the electronic band gap in lanthanide oxides,” Phys. Rev. B 87(12), 125116 (2013).
    [Crossref]
  22. Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
    [Crossref]
  23. R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
    [Crossref]
  24. C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
    [Crossref] [PubMed]
  25. C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).
  26. J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
    [Crossref]
  27. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

2015 (5)

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

2014 (7)

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Z. Li, J. Shi, H. Zhang, and M. Sun, “Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo,” Opt. Express 22(9), 10509–10518 (2014).
[Crossref] [PubMed]

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

2013 (4)

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

A. Watras, R. Pązik, and P. J. Dereń, “Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc),” J. Lumin. 133, 35–38 (2013).
[Crossref]

R. Gillen, S. J. Clark, and J. Robertson, “Nature of the electronic band gap in lanthanide oxides,” Phys. Rev. B 87(12), 125116 (2013).
[Crossref]

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

2012 (1)

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

2011 (3)

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (1)

C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

2008 (1)

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
[Crossref]

2006 (1)

R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
[Crossref]

2005 (1)

B. Liu, C. Shi, and Z. Qi, “Potential white-light long-lasting phosphor: Dy3+-doped aluminate,” Appl. Phys. Lett. 86(19), 191111 (2005).
[Crossref]

2004 (1)

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

2002 (1)

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

1969 (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Abdukayum, A.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Alahraché, S.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Allix, M.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Bessière, A.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Bos, A. J. J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Bottinelli, E.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Boudjelthia, E. A. K.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Caratto, V.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Cheah, K. W.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
[Crossref]

Chen, H.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Chen, J. T.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Chen, M.

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

Chen, R.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

Chen, T.-M.

C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

Chenu, S.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Choi, J. C.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

Clark, S. J.

R. Gillen, S. J. Clark, and J. Robertson, “Nature of the electronic band gap in lanthanide oxides,” Phys. Rev. B 87(12), 125116 (2013).
[Crossref]

Costa, G. A.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Deren, P. J.

A. Watras, R. Pązik, and P. J. Dereń, “Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc),” J. Lumin. 133, 35–38 (2013).
[Crossref]

Dong, G.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Dorenbos, P.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Fan, W.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Fasoli, M.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Fayon, F.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Fu, J.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Gecevicius, M.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Gianotti, E.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Gillen, R.

R. Gillen, S. J. Clark, and J. Robertson, “Nature of the electronic band gap in lanthanide oxides,” Phys. Rev. B 87(12), 125116 (2013).
[Crossref]

Gourier, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Han, G.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Huang, C.-H.

C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

Huang, L.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Huang, Q.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Jacquart, S.

Jeon, P. E.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

Jia, D.

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

Jia, W.

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

Jia, Y.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Jiang, L.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Katayama, Y.

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

Kim, G. C.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

Kim, J. S.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

Kobayashi, H.

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

Kuo, T.-W.

C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

Kuroishi, K.

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Lecointre, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Li, C.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Li, D.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Li, H.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Li, J. Q.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
[Crossref]

Li, Y.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Li, Y. Y.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Li, Z.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Z. Li, J. Shi, H. Zhang, and M. Sun, “Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo,” Opt. Express 22(9), 10509–10518 (2014).
[Crossref] [PubMed]

Lin, H.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Lin, Z.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Liu, B.

B. Liu, C. Shi, and Z. Qi, “Potential white-light long-lasting phosphor: Dy3+-doped aluminate,” Appl. Phys. Lett. 86(19), 191111 (2005).
[Crossref]

Liu, C.

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, Q.

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

Locardi, F.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Lu, S.

R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Ma, Z.

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Martini, M.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Masini, R.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Massiot, D.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Meltzer, R. S.

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

Meng, J. X.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
[Crossref]

Mho, S. I.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

Miletto, I.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Molokeev, M. S.

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

Moses, E.

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

Oron, D.

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Pang, R.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Panzeri, L.

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Park, H. L.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

Pazik, R.

A. Watras, R. Pązik, and P. J. Dereń, “Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc),” J. Lumin. 133, 35–38 (2013).
[Crossref]

Peng, M.

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Porcher, F.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Poumeyrol, T.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Priolkar, K.

Qi, Z.

B. Liu, C. Shi, and Z. Qi, “Potential white-light long-lasting phosphor: Dy3+-doped aluminate,” Appl. Phys. Lett. 86(19), 191111 (2005).
[Crossref]

Qin, X.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Qiu, J.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Richard, C.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Robertson, J.

R. Gillen, S. J. Clark, and J. Robertson, “Nature of the electronic band gap in lanthanide oxides,” Phys. Rev. B 87(12), 125116 (2013).
[Crossref]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Sharafudeen, K.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Sharma, S. K.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Shi, C.

B. Liu, C. Shi, and Z. Qi, “Potential white-light long-lasting phosphor: Dy3+-doped aluminate,” Appl. Phys. Lett. 86(19), 191111 (2005).
[Crossref]

Shi, J.

Shi, Z. P.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
[Crossref]

Silberberg, Y.

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

Su, Q.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Sun, M.

Sun, W.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Tanabe, S.

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Thiberge, S.

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

Ueda, J.

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Véron, E.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Viana, B.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Wang, B.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Wang, H.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Wang, X.

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

Wang, Y.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Watras, A.

A. Watras, R. Pązik, and P. J. Dereń, “Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc),” J. Lumin. 133, 35–38 (2013).
[Crossref]

Wu, X.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Wu, Y.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Xia, Z.

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

Xu, J.

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

Yan, X. P.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Yelin, D.

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Interionic Energy Transfer in Y3Al5O12: Ce3+, Pr3+, Cr3+ Phosphor,” Opt. Express 159(4), F68–F72 (2012).

Yen, W. M.

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

Zhang, H.

Zhang, J.

R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
[Crossref]

Zhang, S.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Zhang, X.

R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
[Crossref]

Zhang, Y.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

Zhao, Q.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Zhao, R.

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Zhong, R.

R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
[Crossref]

Zhou, S.

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (3)

C.-H. Huang, T.-W. Kuo, and T.-M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

H. Lin, J. Xu, Q. Huang, B. Wang, H. Chen, Z. Lin, and Y. Wang, “Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED,” ACS Appl. Mater. Interfaces 7(39), 21835–21843 (2015).
[Crossref] [PubMed]

V. Caratto, F. Locardi, G. A. Costa, R. Masini, M. Fasoli, L. Panzeri, M. Martini, E. Bottinelli, E. Gianotti, and I. Miletto, “NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants,” ACS Appl. Mater. Interfaces 6(20), 17346–17351 (2014).
[Crossref] [PubMed]

Appl. Phys. Express (1)

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

Appl. Phys. Lett. (6)

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

D. Jia, R. S. Meltzer, W. M. Yen, W. Jia, and X. Wang, “Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer,” Appl. Phys. Lett. 80(9), 1535–1537 (2002).
[Crossref]

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2933 (2004).
[Crossref]

B. Liu, C. Shi, and Z. Qi, “Potential white-light long-lasting phosphor: Dy3+-doped aluminate,” Appl. Phys. Lett. 86(19), 191111 (2005).
[Crossref]

R. Zhong, J. Zhang, X. Zhang, and S. Lu, “Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer,” Appl. Phys. Lett. 88, 201916 (2006).
[Crossref]

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet,” Appl. Phys. Lett. 93(22), 221908 (2008).
[Crossref]

Chem. Mater. (1)

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Dalton Trans. (1)

R. Pang, Y. Jia, R. Zhao, H. Li, J. Fu, W. Sun, L. Jiang, S. Zhang, C. Li, and Q. Su, “Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate,” Dalton Trans. 43(25), 9661–9668 (2014).
[Crossref] [PubMed]

Inorg. Chem. (1)

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Near-infrared luminescence and color tunable chromophores based on Cr3+-doped mullite-type Bi2(Ga,Al)4O9 solid solutions,” Inorg. Chem. 54(4), 1876–1882 (2015).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

C. Liu, Z. Xia, M. Chen, M. S. Molokeev, and Q. Liu, “Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+,” J. Am. Ceram. Soc. 97(8), 2573–2579 (2014).

J. Am. Chem. Soc. (3)

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[Crossref] [PubMed]

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135(38), 14125–14133 (2013).
[Crossref] [PubMed]

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

J. Lumin. (1)

A. Watras, R. Pązik, and P. J. Dereń, “Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc),” J. Lumin. 133, 35–38 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(15), 2657–2663 (2014).
[Crossref]

Nat. Mater. (2)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

NPG Asia Mater. (1)

Y. Li, Y. Y. Li, R. Chen, K. Sharafudeen, S. Zhou, M. Gecevicius, H. Wang, G. Dong, Y. Wu, X. Qin, and J. Qiu, “Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence,” NPG Asia Mater. 7, 38 (2015).

Opt. Express (3)

Phys. Rev. B (1)

R. Gillen, S. J. Clark, and J. Robertson, “Nature of the electronic band gap in lanthanide oxides,” Phys. Rev. B 87(12), 125116 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The afterglow spectra of LACe, LACr and LACC2. (b) Persistent luminescence decay curves monitoring at the emission of 735 nm for LACe, LACr, LACC1, LACC2, LACC3 and LACC4 measured after irradiation by a 315 nm Xe lamp for 10 min. The inset shows the persistent luminescence decay curves monitoring at the emission of 415 nm for the corresponding phosphors.
Fig. 2
Fig. 2 Normalized TL curves of LACe, LACr, LACC1, LACC2, LACC3 and LACC4 irradiated by a 315 nm Xenon lamp for 10 min. (a) Monitoring at 735 nm at 2 min after the stoppage of irradiation. (b) The monitoring wavelength of LACr was 415 nm, and the monitoring wavelength of LACr and LACC2 was 735 nm. The TL curve of LACC2 was Gaussian-resolved into two fitted curves. The fitting parameters of Tm1, Tm2, ω1 and ω2 are 345 K, 395 K, 54 K and 38 K, respectively.
Fig. 3
Fig. 3 PL spectra of LACC1, LACC2, LACC3 and LACC4 acquired under excitation of 310 nm.
Fig. 4
Fig. 4 PL spectra of LACe excited at 315 nm, and PLE spectra of LACe monitoring at 415nm and LACr, LACC1, LACC2, LACC3 and LACC4 monitoring at 735 nm, respectively.
Fig. 5
Fig. 5 A schematic representation of persistent energy transfer and persistent luminescence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E=2 k B T m ( 1.26 T m ω 1 )

Metrics