Abstract

We report, in full detail, the experimental fabrication process of a coaxial plasmonic metamaterial which is designed to operate in the UV/visible part of the spectrum. The metamaterial consists of ultra-thin wall (13–15 nm) dielectric (Si or HSQ) coaxial cylinders with a well defined diameter (>100 nm) embedded in silver or gold. We demonstrate the fabrication process on both a SiO2 and Si substrate, where fabrication on a 1 µm thick Si membrane results in nearly freestanding structures. The process starts with creating an HSQ etch mask, using electron beam lithography. The structures are then transferred into the substrate with reactive ion etching, followed by metal infilling using a newly developed physical vapor deposition technique. Finally, the metamaterial surface is polished and made optically accessible with focused ion beam milling under grazing angles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots

Yang Chen, Jianfeng Chen, Xianfan Xu, and Jiaru Chu
Opt. Express 23(7) 9093-9099 (2015)

Quantum nanophotonics in diamond [Invited]

Tim Schröder, Sara L. Mouradian, Jiabao Zheng, Matthew E. Trusheim, Michael Walsh, Edward H. Chen, Luozhou Li, Igal Bayn, and Dirk Englund
J. Opt. Soc. Am. B 33(4) B65-B83 (2016)

Fabrication of metallic nanopatterns with ultrasmooth surface on various substrates through lift-off and transfer process

Cai Hongbing, Ren Wenzhen, Zhang Kun, Tian Yangchao, Pan Nan, Luo Yi, and Wang Xiaoping
Opt. Express 21(26) 32417-32424 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Phys. Usp. 10, 509 (1968).
    [Crossref]
  2. E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
    [Crossref]
  3. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
    [Crossref]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [Crossref] [PubMed]
  6. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
    [Crossref]
  7. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
    [Crossref]
  8. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
    [Crossref] [PubMed]
  9. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? a case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
    [Crossref]
  10. R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
    [Crossref] [PubMed]
  11. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
    [Crossref] [PubMed]
  12. M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
    [Crossref] [PubMed]
  13. M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
    [Crossref]
  14. N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications (Springer, 2010).
  15. A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on hsq: state of the art,” Nanotechnology 20, 292001 (2009).
    [Crossref] [PubMed]
  16. C. L. Frye and W. T. Collins, “Oligomeric silsesquioxanes, (hsio3/2)n,” J. Am. Chem. Soc. 92, 5586–5588 (1970).
    [Crossref]
  17. S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
    [Crossref]
  18. F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20, 2932–2936 (2002).
    [Crossref]
  19. Y. Chen, H. Yang, and Z. Cui, “Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane,” Microelectron. Eng. 83, 1119–1123 (2006).
    [Crossref]
  20. F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
    [Crossref]
  21. Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
    [Crossref]
  22. N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
    [Crossref]
  23. H. F. Winters and J. W. Coburn, “Surface science aspects of etching reactions,” Surf. Sci. Rep. 14, 162–269 (1992).
    [Crossref]
  24. Z. Cui, Nanofabrication: Principles, Capabilities, and Limits (Springer Science, 2008).
    [Crossref]
  25. R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
    [Crossref]
  26. S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
    [Crossref]
  27. E. Gogolides, S. Grigoropoulos, and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron si reactive ion etching using fluorine only containing gases,” Microelectron. Eng. 27, 449–452 (1995).
    [Crossref]
  28. V. Gianneta, A. Olziersky, and A. Nassiopoulou, “Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask,” Nanoscale Res. Lett. 8, 71 (2013).
    [Crossref] [PubMed]
  29. H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
    [Crossref]
  30. R. d’Agostino and D. L. Flamm, “Plasma etching of si and sio2 in sf6–o2 mixtures,” J. Appl. Phys. 52, 162–167 (1981).
    [Crossref]
  31. V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31, 050825 (2013).
    [Crossref]
  32. D. L. Olynick, J. A. Liddle, and I. W. Rangelow, “Profile evolution of cr masked features undergoing hbr-inductively coupled plasma etching for use in 25 nm silicon nanoimprint templates,” J. Vac. Sci. Technol. B 23, 2073–2077 (2005).
    [Crossref]
  33. WalkerZ. H.OgryzloE. A.Rate constants for the etching of intrinsic and doped polycrystalline silicon by bromine atoms, vol. 69 (American Institute of Physics, Melville, NY, ETATS-UNIS, 1991).
  34. D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
    [Crossref]
  35. S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
    [Crossref]

2014 (1)

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
[Crossref] [PubMed]

2013 (3)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
[Crossref]

V. Gianneta, A. Olziersky, and A. Nassiopoulou, “Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask,” Nanoscale Res. Lett. 8, 71 (2013).
[Crossref] [PubMed]

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31, 050825 (2013).
[Crossref]

2010 (3)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[Crossref] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[Crossref] [PubMed]

2009 (1)

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on hsq: state of the art,” Nanotechnology 20, 292001 (2009).
[Crossref] [PubMed]

2008 (3)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? a case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

2007 (3)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

2006 (4)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Y. Chen, H. Yang, and Z. Cui, “Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane,” Microelectron. Eng. 83, 1119–1123 (2006).
[Crossref]

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
[Crossref]

2005 (2)

Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
[Crossref]

D. L. Olynick, J. A. Liddle, and I. W. Rangelow, “Profile evolution of cr masked features undergoing hbr-inductively coupled plasma etching for use in 25 nm silicon nanoimprint templates,” J. Vac. Sci. Technol. B 23, 2073–2077 (2005).
[Crossref]

2002 (2)

F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20, 2932–2936 (2002).
[Crossref]

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

1997 (1)

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[Crossref]

1996 (1)

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

1995 (2)

E. Gogolides, S. Grigoropoulos, and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron si reactive ion etching using fluorine only containing gases,” Microelectron. Eng. 27, 449–452 (1995).
[Crossref]

R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
[Crossref]

1992 (1)

H. F. Winters and J. W. Coburn, “Surface science aspects of etching reactions,” Surf. Sci. Rep. 14, 162–269 (1992).
[Crossref]

1981 (1)

R. d’Agostino and D. L. Flamm, “Plasma etching of si and sio2 in sf6–o2 mixtures,” J. Appl. Phys. 52, 162–167 (1981).
[Crossref]

1970 (1)

C. L. Frye and W. T. Collins, “Oligomeric silsesquioxanes, (hsio3/2)n,” J. Am. Chem. Soc. 92, 5586–5588 (1970).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Phys. Usp. 10, 509 (1968).
[Crossref]

Adesida, I.

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

Atwater, H. A.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Boer, M. d.

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

Bouchoule, S.

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Burgos, S. P.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[Crossref] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[Crossref] [PubMed]

Cabrini, S.

D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
[Crossref]

Chabert, P.

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Chen, Y.

Y. Chen, H. Yang, and Z. Cui, “Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane,” Microelectron. Eng. 83, 1119–1123 (2006).
[Crossref]

Choi, S.

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

Clark, N.

N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
[Crossref]

Coburn, J. W.

H. F. Winters and J. W. Coburn, “Surface science aspects of etching reactions,” Surf. Sci. Rep. 14, 162–269 (1992).
[Crossref]

Collins, W. T.

C. L. Frye and W. T. Collins, “Oligomeric silsesquioxanes, (hsio3/2)n,” J. Am. Chem. Soc. 92, 5586–5588 (1970).
[Crossref]

Cui, Z.

Y. Chen, H. Yang, and Z. Cui, “Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane,” Microelectron. Eng. 83, 1119–1123 (2006).
[Crossref]

Z. Cui, Nanofabrication: Principles, Capabilities, and Limits (Springer Science, 2008).
[Crossref]

d’Agostino, R.

R. d’Agostino and D. L. Flamm, “Plasma etching of si and sio2 in sf6–o2 mixtures,” J. Appl. Phys. 52, 162–167 (1981).
[Crossref]

de Boer, M.

R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
[Crossref]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[Crossref] [PubMed]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[Crossref] [PubMed]

Dionne, J. A.

Dolling, G.

Donnelly, V. M.

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31, 050825 (2013).
[Crossref]

Dubois, E.

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

Elwenspoek, M.

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
[Crossref]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
[Crossref]

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Flamm, D. L.

R. d’Agostino and D. L. Flamm, “Plasma etching of si and sio2 in sf6–o2 mixtures,” J. Appl. Phys. 52, 162–167 (1981).
[Crossref]

Fluitman, J.

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

François, M.

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

Fruleux-Cornu, F.

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

Frye, C. L.

C. L. Frye and W. T. Collins, “Oligomeric silsesquioxanes, (hsio3/2)n,” J. Am. Chem. Soc. 92, 5586–5588 (1970).
[Crossref]

Fuchs, A.

Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
[Crossref]

Gardeniers, H.

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

Gatilova, L.

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Georgiev, Y.

Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
[Crossref]

Gianneta, V.

V. Gianneta, A. Olziersky, and A. Nassiopoulou, “Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask,” Nanoscale Res. Lett. 8, 71 (2013).
[Crossref] [PubMed]

Giessen, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Gogolides, E.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[Crossref]

E. Gogolides, S. Grigoropoulos, and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron si reactive ion etching using fluorine only containing gases,” Microelectron. Eng. 27, 449–452 (1995).
[Crossref]

Grigorescu, A. E.

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on hsq: state of the art,” Nanotechnology 20, 292001 (2009).
[Crossref] [PubMed]

Grigoropoulos, S.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[Crossref]

E. Gogolides, S. Grigoropoulos, and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron si reactive ion etching using fluorine only containing gases,” Microelectron. Eng. 27, 449–452 (1995).
[Crossref]

Grove, R.

N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
[Crossref]

Guilet, S.

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Hagen, C. W.

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on hsq: state of the art,” Nanotechnology 20, 292001 (2009).
[Crossref] [PubMed]

Harteneck, B. D.

D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
[Crossref]

Henschel, W.

Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
[Crossref]

Jansen, H.

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
[Crossref]

Jin, N.

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

Kornblit, A.

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31, 050825 (2013).
[Crossref]

Krchnavek, R. R.

N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
[Crossref]

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Kuipers, L.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Kumar, V.

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

Kurz, H.

Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
[Crossref]

Largeau, L.

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Lederer, F.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Legtenberg, R.

R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
[Crossref]

Liddle, J. A.

D. L. Olynick, J. A. Liddle, and I. W. Rangelow, “Profile evolution of cr masked features undergoing hbr-inductively coupled plasma etching for use in 25 nm silicon nanoimprint templates,” J. Vac. Sci. Technol. B 23, 2073–2077 (2005).
[Crossref]

D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
[Crossref]

Lim, M. H.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

Liu, N.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Maas, R.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
[Crossref]

Morton, R.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

Muller, M.

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

Nassiopoulos, A. G.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[Crossref]

E. Gogolides, S. Grigoropoulos, and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron si reactive ion etching using fluorine only containing gases,” Microelectron. Eng. 27, 449–452 (1995).
[Crossref]

Nassiopoulou, A.

V. Gianneta, A. Olziersky, and A. Nassiopoulou, “Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask,” Nanoscale Res. Lett. 8, 71 (2013).
[Crossref] [PubMed]

Olynick, D. L.

D. L. Olynick, J. A. Liddle, and I. W. Rangelow, “Profile evolution of cr masked features undergoing hbr-inductively coupled plasma etching for use in 25 nm silicon nanoimprint templates,” J. Vac. Sci. Technol. B 23, 2073–2077 (2005).
[Crossref]

D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
[Crossref]

Olziersky, A.

V. Gianneta, A. Olziersky, and A. Nassiopoulou, “Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask,” Nanoscale Res. Lett. 8, 71 (2013).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
[Crossref]

Patriarche, G.

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Penaud, J.

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

Peuker, M.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

Polman, A.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
[Crossref]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[Crossref] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[Crossref] [PubMed]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? a case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

Rangelow, I. W.

D. L. Olynick, J. A. Liddle, and I. W. Rangelow, “Profile evolution of cr masked features undergoing hbr-inductively coupled plasma etching for use in 25 nm silicon nanoimprint templates,” J. Vac. Sci. Technol. B 23, 2073–2077 (2005).
[Crossref]

D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
[Crossref]

Rockstuhl, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Romijn, J.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

Schokker, H.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shannon, M.

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, H. I.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Tserepi, A. D.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

van de Haar, M. A.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
[Crossref] [PubMed]

van Delft, F. C. M. J. M.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20, 2932–2936 (2002).
[Crossref]

van der Drift, E. W. J. M.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

van Langen-Suurling, A. K.

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

Vanderslice, A.

N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
[Crossref]

Verhagen, E.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? a case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Phys. Usp. 10, 509 (1968).
[Crossref]

Wegener, M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

Winters, H. F.

H. F. Winters and J. W. Coburn, “Surface science aspects of etching reactions,” Surf. Sci. Rep. 14, 162–269 (1992).
[Crossref]

Yahya, N.

N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications (Springer, 2010).

Yang, H.

Y. Chen, H. Yang, and Z. Cui, “Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane,” Microelectron. Eng. 83, 1119–1123 (2006).
[Crossref]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

C. L. Frye and W. T. Collins, “Oligomeric silsesquioxanes, (hsio3/2)n,” J. Am. Chem. Soc. 92, 5586–5588 (1970).
[Crossref]

J. Appl. Phys. (1)

R. d’Agostino and D. L. Flamm, “Plasma etching of si and sio2 in sf6–o2 mixtures,” J. Appl. Phys. 52, 162–167 (1981).
[Crossref]

J. Electrochem. Soc. (1)

R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotropic reactive ion etching of silicon using sf6 / o2 / chf3 gas mixtures,” J. Electrochem. Soc. 142, 2020–2028 (1995).
[Crossref]

J. Micromech. Microeng. (1)

H. Jansen, H. Gardeniers, M. d. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 14 (1996).
[Crossref]

J. Vac. Sci. Technol. A (1)

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31, 050825 (2013).
[Crossref]

J. Vac. Sci. Technol. B (6)

D. L. Olynick, J. A. Liddle, and I. W. Rangelow, “Profile evolution of cr masked features undergoing hbr-inductively coupled plasma etching for use in 25 nm silicon nanoimprint templates,” J. Vac. Sci. Technol. B 23, 2073–2077 (2005).
[Crossref]

N. Clark, A. Vanderslice, R. Grove, and R. R. Krchnavek, “Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist,” J. Vac. Sci. Technol. B 24, 3073–3076 (2006).
[Crossref]

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of sf6/chf3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[Crossref]

S. Choi, N. Jin, V. Kumar, I. Adesida, and M. Shannon, “Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication,” J. Vac. Sci. Technol. B 25, 2085–2088 (2007).
[Crossref]

F. C. M. J. M. van Delft, “Delay-time and aging effects on contrast and sensitivity of hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 20, 2932–2936 (2002).
[Crossref]

S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall passivation assisted by a silicon coverplate during cl2–h2 and hbr inductively coupled plasma etching of inp for photonic devices,” J. Vac. Sci. Technol. B 26, 666–674 (2008).
[Crossref]

Mater. Sci. Eng. C (1)

F. Fruleux-Cornu, J. Penaud, E. Dubois, M. François, and M. Muller, “An optimal high contrast e-beam lithography process for the patterning of dense fin networks,” Mater. Sci. Eng. C 26, 893–897 (2006).
[Crossref]

Microelectron. Eng. (3)

M. Peuker, M. H. Lim, H. I. Smith, R. Morton, A. K. van Langen-Suurling, J. Romijn, E. W. J. M. van der Drift, and F. C. M. J. M. van Delft, “Hydrogen silsesquioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies,” Microelectron. Eng. 61–62, 803–809 (2002).
[Crossref]

E. Gogolides, S. Grigoropoulos, and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron si reactive ion etching using fluorine only containing gases,” Microelectron. Eng. 27, 449–452 (1995).
[Crossref]

Y. Chen, H. Yang, and Z. Cui, “Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane,” Microelectron. Eng. 83, 1119–1123 (2006).
[Crossref]

Nano Lett. (1)

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coaxial Plasmonic Metamaterial,” Nano Lett. 14, 6356–6360 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

V. Gianneta, A. Olziersky, and A. Nassiopoulou, “Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask,” Nanoscale Res. Lett. 8, 71 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

A. E. Grigorescu and C. W. Hagen, “Resists for sub-20-nm electron beam lithography with a focus on hsq: state of the art,” Nanotechnology 20, 292001 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[Crossref] [PubMed]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Nature Photon. (1)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nature Photon. 7, 907–912 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010).
[Crossref]

Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Phys. Usp. 10, 509 (1968).
[Crossref]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

H. F. Winters and J. W. Coburn, “Surface science aspects of etching reactions,” Surf. Sci. Rep. 14, 162–269 (1992).
[Crossref]

Vacuum (1)

Y. Georgiev, W. Henschel, A. Fuchs, and H. Kurz, “Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist,” Vacuum 77, 117–123 (2005).
[Crossref]

Other (4)

N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications (Springer, 2010).

Z. Cui, Nanofabrication: Principles, Capabilities, and Limits (Springer Science, 2008).
[Crossref]

WalkerZ. H.OgryzloE. A.Rate constants for the etching of intrinsic and doped polycrystalline silicon by bromine atoms, vol. 69 (American Institute of Physics, Melville, NY, ETATS-UNIS, 1991).

D. L. Olynick, J. A. Liddle, B. D. Harteneck, S. Cabrini, and I. W. Rangelow, “Nanoscale pattern transfer for templates, nems, and nano-optics,” vol. 6462, pp. 64620J. .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1 Fabrication process of the coaxial metamaterial. (a) Sketch and (b) SEM images of the individual steps: 1. EBL on Si, Si membrane or SiO2 substrate, 2. RIE etching to transfer the structures into the substrate, 3. Metal deposition using a newly developed EBPVD method, and 4. Polishing the surface with the FIB under grazing incidence.
Fig. 2
Fig. 2 HSQ coaxes after exposure to a 30 keV electron beam and development in a 25% TMAH solution in water on a (a,b) SiO2 and (c–f) Si substrate. (a,c,e) show a top view, whereas (b,d,f) show a tilted view. The structures in (c,d) are 80nm in height, the structures in (b,f) are ~200 nm tall. SEM images are taken using a 5~keV electron beam.
Fig. 3
Fig. 3 (a) Top and (b) tilted view of a hexagonal array of HSQ coaxes, having an outer diameter of 150 nm, a wall thickness of 5–10 nm and a height of 220 nm on a 1 µm thick Si membrane after exposure of a 100 keV electron beam and development in a 5% TMAH solution in water. SEM images are taken using a 5 keV electron beam.
Fig. 4
Fig. 4 Limitations in resolution of EBL with HSQ. (a) There are basically no limits on the maximum diameter. This ring is 1 µm in diameter. (b) The minimum ring diameter is about 85 nm for 100 nm tall rings. Decreasing the radius further results in completely filled rings. (c) If the ring-to-ring distance is smaller than ~30 nm the coaxes start to merge. The ring-to-ring distance was designed here to be 20 nm. In (d) the ring-to-ring distance is 30 nm. (e,f) Top and tilted view of 410 nm tall coaxes on a Si membrane (100 keV). The ring diameter is 130 nm and the wall thickness is about 16 nm. SEM images are taken using a 5 keV electron beam.
Fig. 5
Fig. 5 Examples of HSQ coaxes where the samples are dried in air after development instead of using the critical point dryer. Short coaxes (a,b) (typically <150 nm) are displaced over the sample, whereas long coaxes (c,d) (typically >150 nm) collapse and cluster together by the surface pressure of the drying liquid droplet. The HSQ coaxes in this figure are 80 nm (a,b) and 335 nm (c,d) nm in height. All SEM images are taken using a 5 keV electron beam.
Fig. 6
Fig. 6 Adhesion problems of HSQ on Si membranes. (a–d) Development with 25% and (e,f) 5% TMAH solution in water at 50 °C. The darker area in (a) is a 500 × 500 µm Si membrane, surrounded by thick Si (lighter grey) to support the membrane. The smaller squares are 20×20 µm fields of exposed and developed HSQ. A zoom of one of these fields is shown in (b), where the bottom left corner is lifted from the substrate under influence of the electron beam during imaging with the SEM. In the experiments shown in (c,d) a HDMS primer was spincoated underneath the HSQ, where (c) shows an 20 × 20 µm field of exposed and developed HSQ rings, and (d) is a zoom where the individual rings can be seen. The squares in (e) are fields of exposed and developed HSQ rings developed using a 5% TMAH solution. In these fields the dose is increasing from top to bottom, while from left to right different geometries are written. A close up of a hexagonal array of coaxes is shown in (f). SEM images are taken using a 5 keV electron beam.
Fig. 7
Fig. 7 RIE using SF6 and CHF3 after different etching times. (a) After 1 minute etching time: very short rings of Si can be distinguished underneath the HSQ mask. (b) After 5 minutes etching time: the etch depth in Si is increased, while the HSQ mask thickness is decreasing. (c) After 8 minutes etching time: the Si coaxes are 150 nm tall, there is almost no HSQ left on top of the structures. (d) After 10 minutes etching time: the Si coaxes are transformed into crown-like structures and there is no HSQ left on top of the structures. SEM images are taken using a 5 keV electron beam.
Fig. 8
Fig. 8 SEM images of Si rings after RIE using SF6 and CHF3, followed by a 10 min. 1% HF dip. (a) Using an HSQ etch mask with a small and (b) a larger wall thickness. The obtained wall thicknesses after etching are 20 and 40 nm respectively. (c) The etch is uniform over the entire 20×20 µm2 coax field. SEM images are taken using a 5 keV electron beam.
Fig. 9
Fig. 9 Ultra-thin Si coaxes. (a) Top view SEM image of Si rings after RIE etching, having a height of 140 nm. Wall thickness is 35 nm. (b) After first oxidation, 1 minute 950 °C 1 L/min O2 and a 5 min. 5% HF dip. The wall thickness is reduced to 15 nm. (c) Top and (d) tilted view of the Si coaxes after second oxidation for 30 s at 950 °C 1 L/min O2 and HF (10 min. 1%) dip. The remaining wall thickness as measured with the SEM is about 6 nm. SEM images are taken using a 5 keV electron beam.
Fig. 10
Fig. 10 SEM images of reactive ion etched Si using HBr after a 10 minutes 1% HF dip to remove the HSQ mask. (a) 250 nm tall and (b) 500 nm tall cylinders, having a wall thickness of 10–20 nm. SEM images are taken using a 5 keV electron beam.
Fig. 11
Fig. 11 Influence of changing the pressure (a,b) and the RF power (c,d) compared to the standard etch recipe for which the lowest pressure possible (2.7 mTorr) and a RF power of 100 mTorr was used. (a) P=7 mTorr, (b) P=8 mTorr. For both cases the etch was more isotropic compared to the standard etch, where the deeper etched regions surrounding the coaxes are more pronounced in the case of higher pressures. This is due to increased ion scattering from the structures. The RF power was decreased to (c) 80 W and increased (d) to 125 W. Both results in a more isotropic etch. All SEM images where taken using a 5 keV electron beam, after a 10 minutes 1% HF dip.
Fig. 12
Fig. 12 The effect of adding (a) 1 sccm and (b) 10 sccm O2 to the standard HBr etching recipe. For small O2 concentrations the anisotropy is decreased due to increased halogen atom density, whereas for larger concentrations the sidewalls are protected with SiO2, resulting in thicker sidewalls. The SEM images are taken after a 1% 10 minutes HF dip to remove the HSQ mask and protective oxide layer. SEM images are taken using a 5 keV electron beam.
Fig. 13
Fig. 13 The effect of (a) decreasing and (b) increasing the temperature with 10 degrees compared to the standard HBr etching recipe at 60 °C. Both SEM images show increased isotropy compared to the standard recipe. The SEM images are taken after a 1% 10 minutes HF dip to remove the HSQ mask. SEM images are taken using a 5 keV electron beam.
Fig. 14
Fig. 14 SEM images of etched coaxial structures with both RF and ICP power. In (a) the standard 100 W RF power is used together with 400 W ICP power. As observed, this combination leads to micro-masking which is probably the result of HSQ sputtering in between the coaxes. In (b) the micro-masking is prevented by lowering the RF power to 30 W, in combination with an increased ICP power of 750 W. Etching with almost only ICP power results in side wall etching and thus less anisotropy. Image (a) was taken before, and (b) after an HF dip to remove the oxide. SEM images are taken using a 5 keV electron beam.
Fig. 15
Fig. 15 Thermally evaporated silver on top of dielectric coaxial structures. (a) The Ag grows as mushrooms on top of the coaxes, shadowing the near surroundings of the rings. (b) After polishing the surface using the FIB, clear air gaps surrounding the dielectric rings are found. (c,d) A 2 nm layer of germanium was evaporated before the metal was deposited. Sample before (c) and after (d) polishing the surface with the FIB. SEM images are taken using a 5 keV electron beam.
Fig. 16
Fig. 16 Sketch of the EBPVD setup used for the metal infilling: the sample is mounted on a rotation stage above the metal crucible, with the sample surface a few degrees off-normal with respect to the metal crucible. An argon ion gun is mounted with an angle of 15° with respect to the sample surface.
Fig. 17
Fig. 17 Results of the newly developed EBPVD method. SEM images of dielectric coaxes embedded in metal before (a) and after (b) polishing the surface with the FIB. (c) Cross section of the same sample shown in (a). These samples show a significant reduction of air voids compared to the SEM images shown in Fig. 15. SEM images are taken using a 5 keV electron beam
Fig. 18
Fig. 18 Alignment issues during the metal infilling process. (a,c,e,g,h) Are taken before and (b,d,f) after polishing with the FIB. (a,b) The gold infilling is performed without rotating the sample during the evaporation process. (c,d) The sample was rotated during the infilling process, with the sample surface tilted normal with respect to the gold crucible. (e,f) The sample as rotated, but tilted too far with respect to the metal crucible, such that the angle between the sample surface and the metal vapor was larger then in the optimal case. (g) Ion gun was mounted under 45° instead of 15° with respect to the sample surface. (h) The evaporation rate was too high (>5 Å/s), resulting in large metal spheres which are sputtered over the sample surface. SEM images are taken using a 5 keV electron beam.
Fig. 19
Fig. 19 Sample limitations for the metal infilling process. (a) Cross section of a 350 nm tall coax having a diameter of 180 nm. The ring itself is covered with gold, but the inner core is completely empty. (b–d) 260 nm tall coaxes with a diameter of 200, 150 and 100 nm respectively. Images of (b–d) taken after polishing the surface with the FIB. SEM images are taken using a 5 keV electron beam.
Fig. 20
Fig. 20 FIB polishing process. (a) Sketch of the setup inside the SEM: a special stub was used to be able to mount the sample such that is is tilted with respect to the ion beam such that the ions come in under an angle of a few degrees. (b) Top view SEM image halfway the polishing process: the dark rings are the Si coaxes which are revealed as the silver is milled away. SEM images are taken using a 5 keV electron beam.
Fig. 21
Fig. 21 SEM images of the final metamaterial sample: the dielectric coaxes appear as dark lines embedded in the lighter colored metal. (a) Top view of a 15×15 µm2 area, (b) top view of a small area and (c) cross section. SEM images are taken using a 5 keV electron beam.
Fig. 22
Fig. 22 FIB polishing alignment problems. (a) Top view of a 20×20 µm2 coax field after FIB polishing. The dark area on the top side is bare Si, where all coaxes have been shaven away. On the bottom fully metal covered coaxes are observed. (b,c) Shadowing of the coaxes: pronounced grooves appear during the polishing process. The ions come in from the top side. (d) Very short (<2 s) exposure of the ion beam under normal incidence. SEM images are taken using a 5 keV electron beam.
Fig. 23
Fig. 23 Back side etching of the Si membrane samples. (a,b) The Si was etched for too long, only the metal remained. The black square on (a) is a reference hole for the measurements. (c) Cross section of a finished 91 nm thick metamaterial sample on a Si membrane of only 17 nm. Pt was deposited to make a better cross section. SEM images are taken using a 5 keV electron beam.

Metrics