Abstract

Yttrium oxide-based nanophosphors that emit both upconversion luminescence (UPL) and cathodoluminescence (CL) were synthesized by a precipitation method using excessive urea. Precursors of Y2O3 nanophosphors were synthesized with size control to less than 50 nm and a chemical yield greater than 90%. Concentrations of rare-earth co-dopants in nanophosphors were controlled with optimal molar ratios. Co-dopants Tm, Yb/Er, Yb enabled NPs to emit UPL at wavelengths around 810/660 nm and CL at wavelengths around 450/660 nm via excitation with 980 nm NIR light and an electron beam. Synthesized NPs were imaged by NIR and CL microscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2006)
  2. D. Matsuura, “Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
    [Crossref]
  3. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
    [Crossref] [PubMed]
  4. L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
    [Crossref]
  5. S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
    [Crossref] [PubMed]
  6. H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
    [Crossref]
  7. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
    [Crossref]
  8. E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
    [Crossref] [PubMed]
  9. E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
    [Crossref] [PubMed]
  10. S. Y. Lee and R. S. Feigelson, “c-axis lithium niobate thin film growth on silicon using solid-source metalorganic chemical vapor deposition,” J. Mater. Res. 14(06), 2662–2667 (1999).
    [Crossref]
  11. D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
    [Crossref]
  12. Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
    [Crossref]
  13. T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
    [Crossref] [PubMed]
  14. H. H. Willard and N. K. Tang, “A study of the precipitation of aluminum basic sulfate by urea,” J. Am. Chem. Soc. 59(7), 1190–1196 (1937).
    [Crossref]
  15. T. Ishikawa and E. Matijević, “Preparation and Properties of Uniform Colloidal Metal Phosphates,” J. Colloid Interface Sci. 123(1), 122–128 (1988).
    [Crossref]
  16. B. Aiken, W. P. Hsu, and E. Matijević, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems,” J. Am. Ceram. Soc. 71(10), 845–853 (1988).
    [Crossref]
  17. S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
    [Crossref]
  18. J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
    [Crossref]
  19. X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
    [Crossref]
  20. J. Zhang and J. Lin, “Vaterite-type YBO3:Eu3+ crystals: hyrothermal synthesis, morphology and photoluminescence properties,” J. Cryst. Growth 271(1-2), 207–215 (2004).
    [Crossref]
  21. M. Kakihana, “Synthesis of high-performance ceramics based on polymerizable complex method,” J. Ceram. Soc. Jpn. 117(1368), 857–862 (2009).
    [Crossref]
  22. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” J. Phys. Rev. B 64(20), 205419 (2001).
    [Crossref]
  23. N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011).
    [Crossref] [PubMed]
  24. T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
    [Crossref] [PubMed]
  25. T. Moeller and N. Fogel, “Observations on the rare earths. LXI. precipitation of hydrous osides or hydroxides from perchlorate solutions,” J. Am. Chem. Soc. 73(9), 4481 (1951).
    [Crossref]
  26. M. Tamres, “Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution,” Inorg. Chem.3(2), 307 (1964).
  27. Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chem. Geol. 217(1–2), 147–169 (2005).
    [Crossref]
  28. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref] [PubMed]

2015 (1)

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

2014 (1)

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

2013 (3)

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

2012 (1)

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

2011 (2)

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011).
[Crossref] [PubMed]

2010 (1)

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

2009 (2)

M. Kakihana, “Synthesis of high-performance ceramics based on polymerizable complex method,” J. Ceram. Soc. Jpn. 117(1368), 857–862 (2009).
[Crossref]

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

2008 (1)

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

2005 (1)

Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chem. Geol. 217(1–2), 147–169 (2005).
[Crossref]

2004 (3)

J. Zhang and J. Lin, “Vaterite-type YBO3:Eu3+ crystals: hyrothermal synthesis, morphology and photoluminescence properties,” J. Cryst. Growth 271(1-2), 207–215 (2004).
[Crossref]

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
[Crossref]

2003 (1)

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

2002 (1)

D. Matsuura, “Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[Crossref]

2001 (1)

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” J. Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

2000 (2)

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
[Crossref]

1999 (1)

S. Y. Lee and R. S. Feigelson, “c-axis lithium niobate thin film growth on silicon using solid-source metalorganic chemical vapor deposition,” J. Mater. Res. 14(06), 2662–2667 (1999).
[Crossref]

1988 (2)

T. Ishikawa and E. Matijević, “Preparation and Properties of Uniform Colloidal Metal Phosphates,” J. Colloid Interface Sci. 123(1), 122–128 (1988).
[Crossref]

B. Aiken, W. P. Hsu, and E. Matijević, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems,” J. Am. Ceram. Soc. 71(10), 845–853 (1988).
[Crossref]

1951 (1)

T. Moeller and N. Fogel, “Observations on the rare earths. LXI. precipitation of hydrous osides or hydroxides from perchlorate solutions,” J. Am. Chem. Soc. 73(9), 4481 (1951).
[Crossref]

1937 (1)

H. H. Willard and N. K. Tang, “A study of the precipitation of aluminum basic sulfate by urea,” J. Am. Chem. Soc. 59(7), 1190–1196 (1937).
[Crossref]

Aiken, B.

B. Aiken, W. P. Hsu, and E. Matijević, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems,” J. Am. Ceram. Soc. 71(10), 845–853 (1988).
[Crossref]

Araki, T.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Araya, K.

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” J. Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

Ashida, M.

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Bettinelli, M.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Boyer, J. C.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Capobianco, J. A.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Cetiner, Z. S.

Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chem. Geol. 217(1–2), 147–169 (2005).
[Crossref]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Dong, D.

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

Ebina, Y.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Feigelson, R. S.

S. Y. Lee and R. S. Feigelson, “c-axis lithium niobate thin film growth on silicon using solid-source metalorganic chemical vapor deposition,” J. Mater. Res. 14(06), 2662–2667 (1999).
[Crossref]

Fogel, N.

T. Moeller and N. Fogel, “Observations on the rare earths. LXI. precipitation of hydrous osides or hydroxides from perchlorate solutions,” J. Am. Chem. Soc. 73(9), 4481 (1951).
[Crossref]

Fujiki, T.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Fukushima, S.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

Furukawa, T.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Gammons, C. H.

Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chem. Geol. 217(1–2), 147–169 (2005).
[Crossref]

García de Abajo, F. J.

N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011).
[Crossref] [PubMed]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” J. Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

Hashimoto, M.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Hattori, A.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Hemmer, E.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Hsu, W. P.

B. Aiken, W. P. Hsu, and E. Matijević, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems,” J. Am. Ceram. Soc. 71(10), 845–853 (1988).
[Crossref]

Hyodo, H.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Ichimiya, M.

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Ikegami, T.

J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
[Crossref]

Ishikawa, T.

T. Ishikawa and E. Matijević, “Preparation and Properties of Uniform Colloidal Metal Phosphates,” J. Colloid Interface Sci. 123(1), 122–128 (1988).
[Crossref]

Ji, X.

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

Jiang, B.

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

Jiang, S.

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

Jiang, X. C.

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

Kakihana, M.

M. Kakihana, “Synthesis of high-performance ceramics based on polymerizable complex method,” J. Ceram. Soc. Jpn. 117(1368), 857–862 (2009).
[Crossref]

Kim, D.

S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
[Crossref]

Kim, Y.

S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
[Crossref]

Kishimoto, H.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Kohl, Y.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Kwon, Y.

S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
[Crossref]

Lee, J. H.

J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
[Crossref]

Lee, S.

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Lee, S. Y.

S. Y. Lee and R. S. Feigelson, “c-axis lithium niobate thin film growth on silicon using solid-source metalorganic chemical vapor deposition,” J. Mater. Res. 14(06), 2662–2667 (1999).
[Crossref]

Li, J. G.

J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
[Crossref]

Liao, C. S.

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

Lin, J.

J. Zhang and J. Lin, “Vaterite-type YBO3:Eu3+ crystals: hyrothermal synthesis, morphology and photoluminescence properties,” J. Cryst. Growth 271(1-2), 207–215 (2004).
[Crossref]

Liu, Z.

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Löw, K.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Matijevic, E.

T. Ishikawa and E. Matijević, “Preparation and Properties of Uniform Colloidal Metal Phosphates,” J. Colloid Interface Sci. 123(1), 122–128 (1988).
[Crossref]

B. Aiken, W. P. Hsu, and E. Matijević, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems,” J. Am. Ceram. Soc. 71(10), 845–853 (1988).
[Crossref]

Matsuura, D.

D. Matsuura, “Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[Crossref]

Men, Y.

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

Miyake, J.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

Moeller, T.

T. Moeller and N. Fogel, “Observations on the rare earths. LXI. precipitation of hydrous osides or hydroxides from perchlorate solutions,” J. Am. Chem. Soc. 73(9), 4481 (1951).
[Crossref]

Mori, T.

J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
[Crossref]

Nagata, T.

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Niioka, H.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

T. Furukawa, H. Niioka, M. Ichimiya, T. Nagata, M. Ashida, T. Araki, and M. Hashimoto, “High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y2O3 nanophosphors,” Opt. Express 21(22), 25655–25663 (2013).
[Crossref] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Nunokawa, T.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Odawara, O.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Ohtani, S.

N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011).
[Crossref] [PubMed]

Onodera, Y.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Rufaihah, A. J.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Shao, M.

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Soga, K.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Sohn, S.

S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
[Crossref]

Speghini, A.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Sun, L. D.

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

Takeshita, H.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Tamres, M.

M. Tamres, “Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution,” Inorg. Chem.3(2), 307 (1964).

Tang, N. K.

H. H. Willard and N. K. Tang, “A study of the precipitation of aluminum basic sulfate by urea,” J. Am. Chem. Soc. 59(7), 1190–1196 (1937).
[Crossref]

Venkatachalam, N.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Vetrone, F.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Wada, H.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Wei, A. G.

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

Willard, H. H.

H. H. Willard and N. K. Tang, “A study of the precipitation of aluminum basic sulfate by urea,” J. Am. Chem. Soc. 59(7), 1190–1196 (1937).
[Crossref]

Wood, S. A.

Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chem. Geol. 217(1–2), 147–169 (2005).
[Crossref]

Yamamoto, N.

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011).
[Crossref] [PubMed]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” J. Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

Yamano, T.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

Yan, C. H.

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

Yang, K.

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Zhang, J.

J. Zhang and J. Lin, “Vaterite-type YBO3:Eu3+ crystals: hyrothermal synthesis, morphology and photoluminescence properties,” J. Cryst. Growth 271(1-2), 207–215 (2004).
[Crossref]

Zhang, S.

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Zhang, Y.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

D. Dong, S. Jiang, Y. Men, X. Ji, and B. Jiang, “Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach,” Adv. Mater. 12(9), 646–649 (2000).
[Crossref]

Appl. Phys. Express (1)

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors,” Appl. Phys. Express 4(11), 112402 (2011).
[Crossref]

Appl. Phys. Lett. (1)

D. Matsuura, “Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[Crossref]

Biomaterials (1)

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Chem. Geol. (1)

Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chem. Geol. 217(1–2), 147–169 (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Aiken, W. P. Hsu, and E. Matijević, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems,” J. Am. Ceram. Soc. 71(10), 845–853 (1988).
[Crossref]

J. Am. Chem. Soc. (2)

H. H. Willard and N. K. Tang, “A study of the precipitation of aluminum basic sulfate by urea,” J. Am. Chem. Soc. 59(7), 1190–1196 (1937).
[Crossref]

T. Moeller and N. Fogel, “Observations on the rare earths. LXI. precipitation of hydrous osides or hydroxides from perchlorate solutions,” J. Am. Chem. Soc. 73(9), 4481 (1951).
[Crossref]

J. Appl. Phys. (1)

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

J. Biomed. Opt. (1)

T. Furukawa, S. Fukushima, H. Niioka, N. Yamamoto, J. Miyake, T. Araki, and M. Hashimoto, “Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy,” J. Biomed. Opt. 20(5), 056007 (2015).
[Crossref] [PubMed]

J. Ceram. Soc. Jpn. (1)

M. Kakihana, “Synthesis of high-performance ceramics based on polymerizable complex method,” J. Ceram. Soc. Jpn. 117(1368), 857–862 (2009).
[Crossref]

J. Colloid Interface Sci. (1)

T. Ishikawa and E. Matijević, “Preparation and Properties of Uniform Colloidal Metal Phosphates,” J. Colloid Interface Sci. 123(1), 122–128 (1988).
[Crossref]

J. Cryst. Growth (1)

J. Zhang and J. Lin, “Vaterite-type YBO3:Eu3+ crystals: hyrothermal synthesis, morphology and photoluminescence properties,” J. Cryst. Growth 271(1-2), 207–215 (2004).
[Crossref]

J. Lumin. (1)

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er, Yb nanoparticles in prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

J. Mater. Res. (2)

J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, “Well-sinterable Y3Al5O12 powder from carbonate precursor,” J. Mater. Res. 15(7), 1514–1523 (2000).
[Crossref]

S. Y. Lee and R. S. Feigelson, “c-axis lithium niobate thin film growth on silicon using solid-source metalorganic chemical vapor deposition,” J. Mater. Res. 14(06), 2662–2667 (1999).
[Crossref]

J. Mater. Sci. Mater. Med. (1)

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In Vitro and In Vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications,” J. Mater. Sci. Mater. Med. 23(10), 2399–2412 (2012).
[Crossref] [PubMed]

J. Phys. Rev. B (1)

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” J. Phys. Rev. B 64(20), 205419 (2001).
[Crossref]

J. Solid State Chem. (1)

X. C. Jiang, C. H. Yan, L. D. Sun, A. G. Wei, and C. S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” J. Solid State Chem. 175(2), 245–251 (2003).
[Crossref]

Micron (1)

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging,” Micron 67, 90–95 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011).
[Crossref] [PubMed]

Nano Res. (1)

L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, and Z. Liu, “Highly-Sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles,” Nano Res. 3(10), 722–732 (2010).
[Crossref]

Nanoscale (1)

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5(23), 11339–11361 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Powder Technol. (1)

S. Sohn, Y. Kwon, Y. Kim, and D. Kim, “Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method,” Powder Technol. 142(2-3), 136–153 (2004).
[Crossref]

Other (2)

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2006)

M. Tamres, “Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution,” Inorg. Chem.3(2), 307 (1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a-d) Transmission electron microscopy images of precursors synthesized with 40, 80, 320, and 640 mg/mL of urea. Scale bar: 1 μm. (e) Size distributions and (f) average diameter of precursors synthesized with various concentrations of urea. Error bars in (f) serve as standard deviations of particle sizes.

Fig. 2
Fig. 2

Chemical yields of synthesis with various concentrations of urea determined by comparison of total mass of yttrium and thulium in the synthesized precursors and in the starting solution.

Fig. 3
Fig. 3

Comparison of the upconversion luminescence spectra and peak intensities, around 750–850 nm, of Y2O3: Tm, Yb phosphor pellets synthesized with various molar ratios of Tm3+ co-dopants.

Fig. 4
Fig. 4

Molar concentration ratio of co-dopant Tm between precursors and starting solution.

Fig. 5
Fig. 5

Cathodoluminescence images (a, c) and stabilities of cathodoluminescence intensity (b, d) of Y2O3: Tm, Yb (a, b) and Y2O3: Er, Yb (c, d) nanophosphors. Excitation source: electron beam. Acquisition wavelength: 450-500 nm (a, b), 640-680 nm (c, d); Acceleration voltage: 80 kV; Image size: 240 nm x 240 nm; pixel size: 2 nm (b), 2.5 nm (d); Scanning speed: 10 ms/pixel (a), 5 ms/pixel (c).

Fig. 6
Fig. 6

Cellular bright-field (a, c) and upconversion luminescence (b, d) images of HeLa cells using Y2O3:Tm, Yb (a, b) and Y2O3:Er, Yb (c, d) nanophosphors. Excitation wavelength: 980 nm; Intensity of 980 nm near-infrared laser light: 14.5 mW (b), 9.7 mW (d); Acquisition wavelength: 770-830 nm (b), 640-680 nm (d); Scanning speed 61.44 µs/pixel.

Fig. 7
Fig. 7

Optical setup for the acquisition of luminescence from phosphor pellets.

Fig. 8
Fig. 8

Maximum and minimum predicted pH value of super saturation of nuclei formation of rare-earth hydroxides from (a) (Y0.978Tm0.002Yb0.02)(NO3)3 and Y0.9765Er0.008Yb0.0155(NO3)3 start solution.

Fig. 9
Fig. 9

pH value of solution during the precipitation reaction with various concentrations of urea.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Re 3+ + 3O H - Re (OH) 3 .
PH=14+ log 10 [ O H - ]=14+ log 10 ( k sp [ Re 3+ ] ) 1 3 ,
Re 3+ + 3O H - Re (OH) 3 .
PH=14+ log 10 [ O H - ]=14+ log 10 ( k sp [ Re 3+ ] ) 1 3 ,

Metrics