Abstract

Optical properties of the line-emitting K2SiF6:Mn4+ phosphor were investigated for LED application. The color coordinate on the CIE chromaticity diagram, photoluminescence (PL), excitation characteristics and decay time of the K2SiF6:Mn4+ phosphor were measured and compared with those of the CaAlSiN3:Eu2+ red phosphor. Then, a set of white LEDs were fabricated based on these two red phosphors. The K2SiF6:Mn4+-loaded white LED is found to have big advantages over the CaAlSiN3:Eu2+-loaded white LED in the luminous flux and the color gamut. Its longevity and the color variation are inferior to its counterpart at 85°C, 85% relative humidity test. However, it is demonstrated in this work that they are improved much by blending two phosphors for white LED application while keeping its performance. Also, it is discussed on how longevity of the K2SiF6:Mn4+ phosphor is improved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives

Heleen F. Sijbom, Reinert Verstraete, Jonas J. Joos, Dirk Poelman, and Philippe F. Smet
Opt. Mater. Express 7(9) 3332-3365 (2017)

Optical characteristics and longevity of quantum dot-coated white LED

Ji Wook Moon, Jin Sung Kim, Bong Gul Min, Hyun Min Kim, and Jae Soo Yoo
Opt. Mater. Express 4(10) 2174-2181 (2014)

Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays

Le Wang, Xiaojun Wang, Takahashi Kohsei, Ken-ichi Yoshimura, Makoto Izumi, Naoto Hirosaki, and Rong-Jun Xie
Opt. Express 23(22) 28707-28717 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Moon, J. S. Kim, B. G. Min, H. M. Kim, and J. S. Yoo, “Optical characteristics and longevity of quantum dot-coated white LED,” Opt. Mater. Express 4(10), 2174–2181 (2014).
    [Crossref]
  2. T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
    [Crossref]
  3. L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
    [Crossref]
  4. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
    [Crossref]
  5. X. Huang, “Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
    [Crossref]
  6. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [Crossref]
  7. A. A. Setlur, O. P. Siclovan, R. J. Lyons, and L. S. Grigorov, “Moisture-resistant phosphor and associated method,” U.S. Patent #8,057,706, (2011).
  8. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
    [PubMed]
  9. A. G. Paulusz, “Efficient Mn(IV) Emission in Fluorine Coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
    [Crossref]
  10. M. G. Brik and A. M. Srivastava, “On the optical properties of Mn4+ in solids,” J. Lumin. 133, 69–72 (2013).
    [Crossref]
  11. M. Novita and K. Ogasawara, “Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration–Interaction Calculations,” Jpn. J. Appl. Phys. 51, 022604 1–6 (2012).
  12. T. Takahashi and S. Adachi, “Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
    [Crossref]
  13. T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
    [Crossref]
  14. K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
    [Crossref]
  15. R. J. Xie, N. Hirosaki, and T. Takeda, “Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett. 2, 022401 (2009).
  16. H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
    [Crossref]
  17. S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
    [Crossref]
  18. L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
    [Crossref]
  19. J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
    [Crossref]
  20. D. Sekiguchi and S. Adachi, “Synthesis and Optical Properties of BaTiF6:Mn4+ Red Phosphor,” ECS J. Solid State Sci. Technol. 3(4), R60–R64 (2014).
    [Crossref]
  21. L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
    [Crossref]
  22. M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
    [Crossref]
  23. A. A. Setlur, “TriGainTM LED phosphor system using red Mn4+ -doped complex fluorides,” GE Global Research 2015 DOE R&D workshop, Niskayuna (2015).
  24. G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
    [Crossref]
  25. S. Khosla and A. Sharma, “Dielectric behavior of carbon-nanotube-doped ferroelectric liquid crystal mixture,” J. Information Display 14(4), 127–129 (2013).
    [Crossref]
  26. C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
    [Crossref]
  27. A. A. Setlur, F. Garcia-Santamaria, J. E. Murphy, and S. P. Sista, “Comparing the properties and performance of GE TrigainTM Phosphors versus typical K2SiF6:Mn4+ phosphors,” Phosphor Safari 2015, Niigata (2015).

2016 (1)

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

2015 (3)

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
[Crossref]

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

2014 (6)

D. Sekiguchi and S. Adachi, “Synthesis and Optical Properties of BaTiF6:Mn4+ Red Phosphor,” ECS J. Solid State Sci. Technol. 3(4), R60–R64 (2014).
[Crossref]

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

X. Huang, “Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

J. W. Moon, J. S. Kim, B. G. Min, H. M. Kim, and J. S. Yoo, “Optical characteristics and longevity of quantum dot-coated white LED,” Opt. Mater. Express 4(10), 2174–2181 (2014).
[Crossref]

2013 (3)

S. Khosla and A. Sharma, “Dielectric behavior of carbon-nanotube-doped ferroelectric liquid crystal mixture,” J. Information Display 14(4), 127–129 (2013).
[Crossref]

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

M. G. Brik and A. M. Srivastava, “On the optical properties of Mn4+ in solids,” J. Lumin. 133, 69–72 (2013).
[Crossref]

2012 (1)

M. Novita and K. Ogasawara, “Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration–Interaction Calculations,” Jpn. J. Appl. Phys. 51, 022604 1–6 (2012).

2011 (4)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

2009 (1)

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett. 2, 022401 (2009).

2008 (1)

T. Takahashi and S. Adachi, “Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

2006 (2)

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[Crossref]

2004 (1)

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

1973 (1)

A. G. Paulusz, “Efficient Mn(IV) Emission in Fluorine Coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
[Crossref]

Adachi, S.

D. Sekiguchi and S. Adachi, “Synthesis and Optical Properties of BaTiF6:Mn4+ Red Phosphor,” ECS J. Solid State Sci. Technol. 3(4), R60–R64 (2014).
[Crossref]

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

T. Takahashi and S. Adachi, “Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

Arai, T.

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

Bang, B. K.

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

Brik, M. G.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

M. G. Brik and A. M. Srivastava, “On the optical properties of Mn4+ in solids,” J. Lumin. 133, 69–72 (2013).
[Crossref]

Cao, R.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Chen, X.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Demir, H. V.

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

Dong, G.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Eeckhout, K. V. D.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

Erdem, T.

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

Fang, M.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Garcia-Santamaria, F.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
[Crossref]

Ha, C. H.

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

Hasegawa, T.

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

Hirosaki, N.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett. 2, 022401 (2009).

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[Crossref]

Hong, G. Y.

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

Hu, S.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Huang, S.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Huang, X.

X. Huang, “Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

Ishigaki, T.

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

Jeon, B. S.

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

Jeoung, B. W.

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

Jiang, X.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Jiao, H.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Joos, J. J.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

Khosla, S.

S. Khosla and A. Sharma, “Dielectric behavior of carbon-nanotube-doped ferroelectric liquid crystal mixture,” J. Information Display 14(4), 127–129 (2013).
[Crossref]

Kim, C. H.

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

Kim, H. M.

Kim, J. S.

Kim, M. S.

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

Kim, S. W.

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Li, J.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

Li, Y.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Liao, C.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Lin, C. C.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Liu, L.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

Liu, R.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Liu, R. S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Lv, L.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Ma, Z.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Martin, L. I. D. J.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

Min, B. G.

Moon, J. W.

Murphy, J. E.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
[Crossref]

Naito, A.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

Nakajima, T.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

Novita, M.

M. Novita and K. Ogasawara, “Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration–Interaction Calculations,” Jpn. J. Appl. Phys. 51, 022604 1–6 (2012).

Ogasawara, K.

M. Novita and K. Ogasawara, “Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration–Interaction Calculations,” Jpn. J. Appl. Phys. 51, 022604 1–6 (2012).

Pan, Y.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Park, W. B.

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Paulusz, A. G.

A. G. Paulusz, “Efficient Mn(IV) Emission in Fluorine Coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
[Crossref]

Poelman, D.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Qiu, J.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Sato, M.

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

Sekiguchi, D.

D. Sekiguchi and S. Adachi, “Synthesis and Optical Properties of BaTiF6:Mn4+ Red Phosphor,” ECS J. Solid State Sci. Technol. 3(4), R60–R64 (2014).
[Crossref]

Setlur, A. A.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
[Crossref]

Sharafudeen, K. N.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

Sharma, A.

S. Khosla and A. Sharma, “Dielectric behavior of carbon-nanotube-doped ferroelectric liquid crystal mixture,” J. Information Display 14(4), 127–129 (2013).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Sijbom, H. F.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

Sista, S.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
[Crossref]

Smet, P. F.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Sohn, K. S.

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

Srivastava, A. M.

M. G. Brik and A. M. Srivastava, “On the optical properties of Mn4+ in solids,” J. Lumin. 133, 69–72 (2013).
[Crossref]

Sun, X.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

Takahashi, T.

T. Takahashi and S. Adachi, “Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

Takeda, T.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett. 2, 022401 (2009).

Toda, K.

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

Uematsu, K.

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

Uheda, K.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[Crossref]

Wei, L.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Whang, K. W.

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

Xie, R. J.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett. 2, 022401 (2009).

Yamamoto, H.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[Crossref]

Yamamoto, Y.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[Crossref]

Yoo, J. S.

J. W. Moon, J. S. Kim, B. G. Min, H. M. Kim, and J. S. Yoo, “Optical characteristics and longevity of quantum dot-coated white LED,” Opt. Mater. Express 4(10), 2174–2181 (2014).
[Crossref]

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

Zhang, C.

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Appl. Phys. Lett. (1)

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett. 2, 022401 (2009).

ECS J. Solid State Sci. Technol. (2)

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, and P. F. Smet, “Luminescent Behavior of the K2SiF6:Mn:4+ Red Phosphor at High Fluxes and at the Microscopic Level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

D. Sekiguchi and S. Adachi, “Synthesis and Optical Properties of BaTiF6:Mn4+ Red Phosphor,” ECS J. Solid State Sci. Technol. 3(4), R60–R64 (2014).
[Crossref]

Electrochem. Solid-State Lett. (1)

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[Crossref]

J. Am. Ceram. Soc. (1)

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ Phosphor from SiO2 Powders via Redox Reaction in HF/KMnO4 Solution and Their Application in Warm-White LED,” J. Am. Ceram. Soc. 96(11), 3552–3555 (2013).
[Crossref]

J. Appl. Phys. (1)

T. Arai and S. Adachi, “Mn-activated Na2SiF6 red and yellowish-green phosphors: A comparative study,” J. Appl. Phys. 110(6), 063514 (2011).
[Crossref]

J. Electrochem. Soc. (4)

T. Takahashi and S. Adachi, “Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

A. G. Paulusz, “Efficient Mn(IV) Emission in Fluorine Coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
[Crossref]

G. Y. Hong, B. W. Jeoung, B. S. Jeon, J. S. Yoo, C. H. Ha, and K. W. Whang, “Improvement of Discharge Characteristics of the Zn2SiO4:Mn2+ Phosphor Layer in Plasma Display Panels,” J. Electrochem. Soc. 151(10), H205–H209 (2004).
[Crossref]

J. Information Display (2)

S. Khosla and A. Sharma, “Dielectric behavior of carbon-nanotube-doped ferroelectric liquid crystal mixture,” J. Information Display 14(4), 127–129 (2013).
[Crossref]

S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, M. Sato, and K. Toda, “Synthesis of Blue-emitting (K1-xNax)Mg4(PO4)3:Eu2+ Phosphors,” J. Information Display 15(2), 53–57 (2014).
[Crossref]

J. Lumin. (1)

M. G. Brik and A. M. Srivastava, “On the optical properties of Mn4+ in solids,” J. Lumin. 133, 69–72 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

M. S. Kim, W. B. Park, B. K. Bang, C. H. Kim, and K. S. Sohn, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5484–5489 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Novita and K. Ogasawara, “Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration–Interaction Calculations,” Jpn. J. Appl. Phys. 51, 022604 1–6 (2012).

Nat. Commun. (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Nat. Photonics (2)

X. Huang, “Red phosphor converts white LEDs,” Nat. Photonics 8(10), 748–749 (2014).
[Crossref]

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi (1)

K. Uheda, N. Hirosaki, Y. Yamamoto, and H. Yamamoto, “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[Crossref]

Sci. Technol. Adv. Mater. (1)

L. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. Zhang, J. Li, and X. Sun, “Photoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes,” Sci. Technol. Adv. Mater. 12(3), 3777–3793 (2011).
[Crossref]

SID Digest. (1)

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the Red-line Emitting LED Phosphor behind GE’s TriGain Technology™ Platform,” SID Digest. 46(1), 927–930 (2015).
[Crossref]

Other (3)

A. A. Setlur, O. P. Siclovan, R. J. Lyons, and L. S. Grigorov, “Moisture-resistant phosphor and associated method,” U.S. Patent #8,057,706, (2011).

A. A. Setlur, “TriGainTM LED phosphor system using red Mn4+ -doped complex fluorides,” GE Global Research 2015 DOE R&D workshop, Niskayuna (2015).

A. A. Setlur, F. Garcia-Santamaria, J. E. Murphy, and S. P. Sista, “Comparing the properties and performance of GE TrigainTM Phosphors versus typical K2SiF6:Mn4+ phosphors,” Phosphor Safari 2015, Niigata (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Normalized excitation and emission spectra of K2SiF6:Mn4+ and CaAlSiN3:Eu2+.
Fig. 2
Fig. 2 Thermal quenching of K2SiF6:Mn4+ and CaAlSiN3:Eu2+.
Fig. 3
Fig. 3 Luminescence decay characteristics of K2SiF6:Mn4+ and CaAlSiN3:Eu2+ measured at room temperature. The phosphor samples were excited at λex = 450 nm and monitored at λem = 632 and 660 nm for K2SiF6:Mn4+ and CaAlSiN3:Eu2+, respectively.
Fig. 4
Fig. 4 Emission spectra of phosphor-converted white LED. The green emitting β-SiAlON:Eu2+ phosphor and two red phosphors are used: CaAlSiN3:Eu2+ (black-line) and K2SiF6:Mn4+ (red-line).
Fig. 5
Fig. 5 Variation of luminous flux over the time under 85 °C and 85% RH.
Fig. 6
Fig. 6 Color change of the white LEDs for each phosphor combination.
Fig. 7
Fig. 7 Body color of two red phosphors before/after boiling
Fig. 8
Fig. 8 SEM image of K2SiF6:Mn4+ phosphor: (a) as-received and (b) after boiling.
Fig. 9
Fig. 9 Variation of emission spectrum of white LEDs after aging. It was operated under 85 °C and 85% RH at 200 mA for 1000 hours.

Tables (4)

Tables Icon

Table 1 Optical properties of CaAlSiN3:Eu2+ and K2SiF6:Mn4+

Tables Icon

Table 2 Device characteristics of the white LEDs

Tables Icon

Table 3 Relative luminous flux of white LEDs for each phosphor combination

Tables Icon

Table 4 Color change of the white LEDs for each phosphor combination

Metrics