Abstract

We report three liquid crystal (LC) mixtures with a wide nematic range (−40°C to ~100°C), small visco-elastic coefficient and low activation energy for vehicular displays. Physical properties at different temperatures were characterized. These LCs greatly improve the performance of different display devices in a car: 1) for head-up projection using liquid-crystal-on-silicon with an average gray-to-gray (GTG) response time less than 1 ms at an elevated temperature. 2) The average GTG response time is maintained at ~10 ms for fringing field switching LCD at T = 0°C and also ~10 ms for twisted nematic LCD at T = −20°C.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response liquid crystal for high-resolution virtual reality displays

Fangwang Gou, Haiwei Chen, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(7) 7984-7997 (2017)

High performance liquid crystal displays with a low dielectric constant material

Haiwei Chen, Fenglin Peng, Zhenyue Luo, Daming Xu, Shin-Tson Wu, Ming-Chun Li, Seok-Lyul Lee, and Weng-Ching Tsai
Opt. Mater. Express 4(11) 2262-2273 (2014)

Submillisecond-response nematic liquid crystals for augmented reality displays

Haiwei Chen, Fangwang Gou, and Shin-Tson Wu
Opt. Mater. Express 7(1) 195-201 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. M. Knoll, “The use of displays in automotive applications,” J. Soc. Inf. Disp. 5(3), 165–172 (1997).
    [Crossref]
  2. M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Automotive head-up display using liquid-crystal-on-silicon displays,” J. Soc. Inf. Disp. 5(1), 33–35 (1997).
    [Crossref]
  3. N. Takasaki, T. Harada, A. Sakaigawa, K. Sako, M. Mifune, and Y. Shiraishi, “Development of RGBW LCD with edge lit 2D local dimming system for automotive applications,” SID Symp. Dig. Tech. Pap. 46(1), 616–619 (2015).
    [Crossref]
  4. S. T. Wu and C. S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
    [Crossref]
  5. M. Schadt and W. Helfrich, “Voltage dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  6. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  7. Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Display Technol. 9(2), 74–77 (2013).
    [Crossref]
  8. D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
    [Crossref]
  9. Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S.-T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
    [Crossref]
  10. K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Display Technol. 1(2), 304–313 (2005).
    [Crossref]
  11. M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
    [Crossref]
  12. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [Crossref]
  13. H. Chen, F. Peng, Z. Luo, D. Xu, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
    [Crossref]
  14. Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
    [Crossref]
  15. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
    [Crossref]
  16. F. Peng, Y.-H. Lee, H. Chen, Z. Li, A. E. Bostwick, R. J. Twieg, and S.-T. Wu, “Low absorption chlorinated liquid crystals for infrared applications,” Opt. Mater. Express 5(6), 1281–1288 (2015).
    [Crossref]
  17. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
    [Crossref]
  18. M. Schadt, R. Buchecker, and K. Müller, “Invited lecture. material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989).
    [Crossref]
  19. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  20. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [Crossref] [PubMed]
  21. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103–118 (1975).
    [Crossref]
  22. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  23. S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
    [Crossref] [PubMed]
  24. E. P. Raynes, “The theory of supertwist transitions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 4(1), 1–8 (1986).
  25. U. Finkenzeller and G. Weber, “A simple method to estimate and optimize the optical slope of TN-Cells and its comparison with experimental results,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 164(1), 145–156 (1988).
  26. L. M. Blinov and V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).
  27. D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
    [Crossref]
  28. E. H. Stupp and M. S. Brennesholtz, Projection Displays (Wiley, 1999).
  29. Y. Chen, F. Peng, and S.-T. Wu, “Submillisecond-response vertical-aligned liquid crystal for color sequential projection displays,” J. Display Technol. 9(2), 78–81 (2013).
    [Crossref]
  30. K. H. Fan-Chiang, C. C. Yen, C. H. Wu, C. J. Chen, B. J. Liao, Y. Y. Ho, C. Y. Liu, and Y. C. Chen, “LCOS panel using novel color sequential technology,” SID Int. Symp. Digest Tech. Papers 38(1), 150–153 (2007).
    [Crossref]

2015 (5)

2014 (3)

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

2013 (2)

2005 (1)

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1997 (3)

P. M. Knoll, “The use of displays in automotive applications,” J. Soc. Inf. Disp. 5(3), 165–172 (1997).
[Crossref]

M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Automotive head-up display using liquid-crystal-on-silicon displays,” J. Soc. Inf. Disp. 5(1), 33–35 (1997).
[Crossref]

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

1996 (1)

S. T. Wu and C. S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

1990 (2)

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

1989 (1)

M. Schadt, R. Buchecker, and K. Müller, “Invited lecture. material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989).
[Crossref]

1988 (1)

U. Finkenzeller and G. Weber, “A simple method to estimate and optimize the optical slope of TN-Cells and its comparison with experimental results,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 164(1), 145–156 (1988).

1986 (2)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

E. P. Raynes, “The theory of supertwist transitions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 4(1), 1–8 (1986).

1984 (1)

1983 (1)

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

1975 (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103–118 (1975).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Ahn, S. H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

An, Z.

Bostwick, A. E.

Buchecker, R.

M. Schadt, R. Buchecker, and K. Müller, “Invited lecture. material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989).
[Crossref]

Chen, H.

Chen, S.-H.

Chen, Y.

Efron, U.

Fan-Chiang, K.-H.

Finkenzeller, U.

U. Finkenzeller and G. Weber, “A simple method to estimate and optimize the optical slope of TN-Cells and its comparison with experimental results,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 164(1), 145–156 (1988).

Gerber, P. R.

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

Haller, I.

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103–118 (1975).
[Crossref]

He, J.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hess, L. D.

Hu, M.

Iwata, Y.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Johnson, K. M.

M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Automotive head-up display using liquid-crystal-on-silicon displays,” J. Soc. Inf. Disp. 5(1), 33–35 (1997).
[Crossref]

Kim, D. E.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Kim, D. H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Knoll, P. M.

P. M. Knoll, “The use of displays in automotive applications,” J. Soc. Inf. Disp. 5(3), 165–172 (1997).
[Crossref]

Lee, S. H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S.-L.

Lee, Y.-H.

Li, J.

Li, M.-C.

Li, Z.

Lim, Y. J.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Luo, Z.

McKnight, D. J.

M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Automotive head-up display using liquid-crystal-on-silicon displays,” J. Soc. Inf. Disp. 5(1), 33–35 (1997).
[Crossref]

Miyachi, K.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Müller, K.

M. Schadt, R. Buchecker, and K. Müller, “Invited lecture. material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989).
[Crossref]

Murata, M.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Ohtake, T.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Peng, F.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S.-T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

F. Peng, Y.-H. Lee, H. Chen, Z. Li, A. E. Bostwick, R. J. Twieg, and S.-T. Wu, “Low absorption chlorinated liquid crystals for infrared applications,” Opt. Mater. Express 5(6), 1281–1288 (2015).
[Crossref]

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Y. Chen, F. Peng, and S.-T. Wu, “Submillisecond-response vertical-aligned liquid crystal for color sequential projection displays,” J. Display Technol. 9(2), 78–81 (2013).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Display Technol. 9(2), 74–77 (2013).
[Crossref]

Petrzilka, M.

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

Raynes, E. P.

E. P. Raynes, “The theory of supertwist transitions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 4(1), 1–8 (1986).

Ren, H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Schadt, M.

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

M. Schadt, R. Buchecker, and K. Müller, “Invited lecture. material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989).
[Crossref]

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

M. Schadt and W. Helfrich, “Voltage dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Schuck, M. H.

M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Automotive head-up display using liquid-crystal-on-silicon displays,” J. Soc. Inf. Disp. 5(1), 33–35 (1997).
[Crossref]

Tan, G.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

Tanaka, K.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Trickes, G.

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

Tripathi, S.

Tsai, W.-C.

Twieg, R. J.

Villiger, A.

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

Weber, G.

U. Finkenzeller and G. Weber, “A simple method to estimate and optimize the optical slope of TN-Cells and its comparison with experimental results,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 164(1), 145–156 (1988).

Wu, C. S.

S. T. Wu and C. S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

Wu, C.-S.

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Wu, S. T.

S. T. Wu and C. S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

Wu, S.-T.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
[Crossref]

F. Peng, Y.-H. Lee, H. Chen, Z. Li, A. E. Bostwick, R. J. Twieg, and S.-T. Wu, “Low absorption chlorinated liquid crystals for infrared applications,” Opt. Mater. Express 5(6), 1281–1288 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S.-T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Y. Chen, F. Peng, and S.-T. Wu, “Submillisecond-response vertical-aligned liquid crystal for color sequential projection displays,” J. Display Technol. 9(2), 78–81 (2013).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Display Technol. 9(2), 74–77 (2013).
[Crossref]

K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Display Technol. 1(2), 304–313 (2005).
[Crossref]

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
[Crossref] [PubMed]

Xu, D.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Yoshida, H.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Annu. Rev. Mater. Sci. (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. T. Wu and C. S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

M. Schadt and W. Helfrich, “Voltage dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

J. Appl. Phys. (1)

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

J. Display Technol. (3)

J. Inf. Disp. (1)

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, and future of fringe-field switching-liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

J. Soc. Inf. Disp. (3)

P. M. Knoll, “The use of displays in automotive applications,” J. Soc. Inf. Disp. 5(3), 165–172 (1997).
[Crossref]

M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Automotive head-up display using liquid-crystal-on-silicon displays,” J. Soc. Inf. Disp. 5(1), 33–35 (1997).
[Crossref]

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014).
[Crossref]

Liq. Cryst. (1)

M. Schadt, R. Buchecker, and K. Müller, “Invited lecture. material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

E. P. Raynes, “The theory of supertwist transitions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 4(1), 1–8 (1986).

U. Finkenzeller and G. Weber, “A simple method to estimate and optimize the optical slope of TN-Cells and its comparison with experimental results,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 164(1), 145–156 (1988).

M. Schadt, M. Petrzilka, P. R. Gerber, A. Villiger, and G. Trickes, “New liquid crystal materials; physical properties and performance in displays for automobile, high information density and guest-host applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 94(1–2), 139–153 (1983).
[Crossref]

Opt. Mater. Express (5)

Phys. Rev. A (2)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

S.-T. Wu and C.-S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Prog. Solid State Chem. (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103–118 (1975).
[Crossref]

Other (4)

N. Takasaki, T. Harada, A. Sakaigawa, K. Sako, M. Mifune, and Y. Shiraishi, “Development of RGBW LCD with edge lit 2D local dimming system for automotive applications,” SID Symp. Dig. Tech. Pap. 46(1), 616–619 (2015).
[Crossref]

L. M. Blinov and V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).

K. H. Fan-Chiang, C. C. Yen, C. H. Wu, C. J. Chen, B. J. Liao, Y. Y. Ho, C. Y. Liu, and Y. C. Chen, “LCOS panel using novel color sequential technology,” SID Int. Symp. Digest Tech. Papers 38(1), 150–153 (2007).
[Crossref]

E. H. Stupp and M. S. Brennesholtz, Projection Displays (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Temperature dependent birefringence and (b) dispersion curves at T = 25°C for the LC mixtures studied. Dots are measured data and solid lines are fitting curves with Eq. (1) and Eq. (2) in (a) and (b), respectively.

Fig. 2
Fig. 2

Temperature dependent visco-elastic coefficients. Dots are experimental data and solid lines are the fitting curves with Eq. (3).

Fig. 3
Fig. 3

Dielectric anisotropy (Δɛ) vs. rotational viscosity at T = 25°C.

Fig. 4
Fig. 4

Voltage-dependent reflectance curves for R, G, B colors. The cell gap is 1.95 μm and T = 55 °C

Fig. 5
Fig. 5

(a) Voltage-dependent transmittance (VT) curves and (b) time-dependent transmittance (TT) curves for FFS mode at λ = 550nm; n = 340nm. (c) VT curves and (d) TT curves for TN mode at λ = 550nm; dΔn = 480nm at T = 25 °C.

Tables (5)

Tables Icon

Table 1 Chemical structures and compositions of our MCRI mixture.

Tables Icon

Table 2 Physical properties of four LC mixtures at T = 25°C.

Tables Icon

Table 3 Fitting parameters of the four LC mixtures at T = 25°C.

Tables Icon

Table 4 Calculated GTG response time (ms) of the MTN cell using DIC-57F-15: d = 1.95μm and T = 55°C.

Tables Icon

Table 5 The free relaxation time (ms) of FFS and TN modes at low temperature regions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n o S = Δ n o ( 1 T / T c ) β ,
Δ n = G λ 2 λ * 2 λ 2 λ * 2 .
γ 1 K 11 = A exp ( E a / k B T ) ( 1 T / T c ) β .
V t h = π K 11 ε 0 Δ ε ,
τ d = 1.238 γ 1 d 2 K 22 π 2 .

Metrics