Abstract

Photo Controlled Deformable Mirrors (PCDMs) are electro-static membrane mirrors where a photoconductive material replaces the conventional electrode pads, so that the mirror surface deforms according to a light pattern projected on the photoconductor, leading to a simplified control system. A proper device design and manufacturing has to take into account many different issues and the material choice is of primary importance. After a brief description of PCDM working principles we consider an equivalent electrical model, deriving the photoconductor’s parameters that most influence the device performances and show some examples among currently available photoconductors. Finally, we propose a complete electro-opto-mechanical model that allows to optimize the system and to enhance the mirror performances.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zinc selenide-based large aperture photo-controlled deformable mirror

Martino Quintavalla, Stefano Bonora, Dario Natali, and Andrea Bianco
Opt. Lett. 41(11) 2573-2575 (2016)

High resolution wavefront correction with photocontrolled deformable mirror

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori
Opt. Express 20(5) 5178-5188 (2012)

Structure modulated electrostatic deformable mirror for focus and geometry control

Saekwang Nam, Suntak Park, Sungryul Yun, Bongje Park, Seung Koo Park, and Ki-Uk Kyung
Opt. Express 24(1) 55-66 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hardy, “Adaptive optics-a progress review,” Proc SPIE 1542, 2–17 (1991).
    [Crossref]
  2. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
    [Crossref]
  3. M. J. Booth, “Adaptive Optics in Microscopy,” Opt. Digit. Image Process. Fundam. Appl. 365, 2829–2843 (2011).
  4. A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(5), 6 (2011).
    [Crossref]
  5. B. Sun, P. S. Salter, and M. J. Booth, “Pulse front adaptive optics: a new method for control of ultrashort laser pulses,” Opt. Express 23, 19348–19357 (2015).
    [Crossref] [PubMed]
  6. M. Yellin, “Using membrane mirrors in adaptive optics,” Proc SPIE 75, 97–102 (1976).
    [Crossref]
  7. R. P. Grosso and M. Yellin, “The membrane mirror as an adaptive optical element,” J. Opt. Soc. Am. 67, 399–406 (1976).
    [Crossref]
  8. U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
    [Crossref]
  9. N. Sheridon, “The Ruticon family of erasable image recording devices,” IEEE Trans. Electron Devices 19, 1003–1010 (1972).
    [Crossref]
  10. S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
    [Crossref] [PubMed]
  11. J. Khoury, A. Drehman, C. L. Woods, B. Haji-Saeed, S. K. Sengupta, W. Goodhue, and J. Kierstead, “Optically driven microelectromechanical-system deformable mirror under high-frequency AC bias,” Opt. Lett. 31(6), 808–810 (2006).
    [Crossref] [PubMed]
  12. A. I. Lakatos, “Photoelectric induced elastomer deformation in PVK-TNF type γ-RUTICON,” J. Appl. Phys. 45, 4857 (1974).
    [Crossref]
  13. B. Haji-saeed, R. Kolluru, D. Pyburn, R. Leon, S. K. Sengupta, M. Testorf, W. Goodhue, J. Khoury, A. Drehman, C. L. Woods, and J. Kierstead, “Photoconductive optically driven deformable membrane under high-frequency bias: fabrication, characterization, and modeling,” Appl. Opt. 45(12), 2615–2622 (2006).
    [Crossref] [PubMed]
  14. M. Cardona and P. Yu, Fundamentals of Semiconductors - Physics and Materials Properties (Springer, 2010).
  15. D. S. Weiss and M. Abkowitz, “Advances in organic photoconductor technology,” Chem. Rev. 110(1), 479–526 (2010).
    [Crossref]
  16. J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction (Prentice Hall, 1989), 2nd ed.
  17. D. Schroöder, Semiconductor Material and Device Characterization (John Wiley & Sons, 2006), 3rd ed.
  18. I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
    [Crossref]
  19. F. Yang, “Membrane modeling of pull-in instability in MEMS sensors and actuators,” in Proceedings of IEEE Sensors (IEEE2002), pp. 1199–1203.
    [Crossref]
  20. M. C. Lai, “A note on finite difference discretizations for poisson equation on a disk,” Numer. Methods Partial Differ. Equ. 17(3), 199–203 (2001).
    [Crossref]
  21. U. Bortolozzo, S. Residori, A. Petrosyan, and J.P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2)317–321 (2006).
    [Crossref]

2015 (1)

2012 (1)

2011 (2)

M. J. Booth, “Adaptive Optics in Microscopy,” Opt. Digit. Image Process. Fundam. Appl. 365, 2829–2843 (2011).

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(5), 6 (2011).
[Crossref]

2010 (2)

U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
[Crossref]

D. S. Weiss and M. Abkowitz, “Advances in organic photoconductor technology,” Chem. Rev. 110(1), 479–526 (2010).
[Crossref]

2006 (3)

2001 (1)

M. C. Lai, “A note on finite difference discretizations for poisson equation on a disk,” Numer. Methods Partial Differ. Equ. 17(3), 199–203 (2001).
[Crossref]

1998 (1)

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

1991 (1)

J. W. Hardy, “Adaptive optics-a progress review,” Proc SPIE 1542, 2–17 (1991).
[Crossref]

1976 (2)

1974 (1)

A. I. Lakatos, “Photoelectric induced elastomer deformation in PVK-TNF type γ-RUTICON,” J. Appl. Phys. 45, 4857 (1974).
[Crossref]

1972 (1)

N. Sheridon, “The Ruticon family of erasable image recording devices,” IEEE Trans. Electron Devices 19, 1003–1010 (1972).
[Crossref]

Abkowitz, M.

D. S. Weiss and M. Abkowitz, “Advances in organic photoconductor technology,” Chem. Rev. 110(1), 479–526 (2010).
[Crossref]

Atalar, A.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

Bonora, S.

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref] [PubMed]

U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
[Crossref]

Booth, M. J.

Bortolozzo, U.

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref] [PubMed]

U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
[Crossref]

U. Bortolozzo, S. Residori, A. Petrosyan, and J.P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2)317–321 (2006).
[Crossref]

Cardona, M.

M. Cardona and P. Yu, Fundamentals of Semiconductors - Physics and Materials Properties (Springer, 2010).

Coburn, D.

Dainty, C.

Drehman, A.

Goodhue, W.

Grosso, R. P.

Haji-saeed, B.

Hardy, J. W.

J. W. Hardy, “Adaptive optics-a progress review,” Proc SPIE 1542, 2–17 (1991).
[Crossref]

Hawkes, J. F. B.

J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction (Prentice Hall, 1989), 2nd ed.

Huignard, J. P.

U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
[Crossref]

Huignard, J.P.

U. Bortolozzo, S. Residori, A. Petrosyan, and J.P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2)317–321 (2006).
[Crossref]

Jin, X.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

Khoury, J.

Khuri-Yakub, B. T.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

Kierstead, J.

Kolluru, R.

Ladabaum, I.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

Lai, M. C.

M. C. Lai, “A note on finite difference discretizations for poisson equation on a disk,” Numer. Methods Partial Differ. Equ. 17(3), 199–203 (2001).
[Crossref]

Lakatos, A. I.

A. I. Lakatos, “Photoelectric induced elastomer deformation in PVK-TNF type γ-RUTICON,” J. Appl. Phys. 45, 4857 (1974).
[Crossref]

Leon, R.

Petrosyan, A.

U. Bortolozzo, S. Residori, A. Petrosyan, and J.P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2)317–321 (2006).
[Crossref]

Pyburn, D.

Residori, S.

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref] [PubMed]

U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
[Crossref]

U. Bortolozzo, S. Residori, A. Petrosyan, and J.P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2)317–321 (2006).
[Crossref]

Roddier, F.

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
[Crossref]

Roorda, A.

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(5), 6 (2011).
[Crossref]

Salter, P. S.

Schroöder, D.

D. Schroöder, Semiconductor Material and Device Characterization (John Wiley & Sons, 2006), 3rd ed.

Sengupta, S. K.

Sheridon, N.

N. Sheridon, “The Ruticon family of erasable image recording devices,” IEEE Trans. Electron Devices 19, 1003–1010 (1972).
[Crossref]

Soh, H. T.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

Sun, B.

Testorf, M.

Weiss, D. S.

D. S. Weiss and M. Abkowitz, “Advances in organic photoconductor technology,” Chem. Rev. 110(1), 479–526 (2010).
[Crossref]

Wilson, J.

J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction (Prentice Hall, 1989), 2nd ed.

Woods, C. L.

Yang, F.

F. Yang, “Membrane modeling of pull-in instability in MEMS sensors and actuators,” in Proceedings of IEEE Sensors (IEEE2002), pp. 1199–1203.
[Crossref]

Yellin, M.

Yu, P.

M. Cardona and P. Yu, Fundamentals of Semiconductors - Physics and Materials Properties (Springer, 2010).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

U. Bortolozzo, S. Bonora, J. P. Huignard, and S. Residori, “Continuous photocontrolled deformable membrane mirror,” Appl. Phys. Lett. 96251108 (2010).
[Crossref]

Chem. Rev. (1)

D. S. Weiss and M. Abkowitz, “Advances in organic photoconductor technology,” Chem. Rev. 110(1), 479–526 (2010).
[Crossref]

IEEE Trans. Electron Devices (1)

N. Sheridon, “The Ruticon family of erasable image recording devices,” IEEE Trans. Electron Devices 19, 1003–1010 (1972).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 678–690 (1998).
[Crossref]

J. Appl. Phys. (1)

A. I. Lakatos, “Photoelectric induced elastomer deformation in PVK-TNF type γ-RUTICON,” J. Appl. Phys. 45, 4857 (1974).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vis. (1)

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(5), 6 (2011).
[Crossref]

Numer. Methods Partial Differ. Equ. (1)

M. C. Lai, “A note on finite difference discretizations for poisson equation on a disk,” Numer. Methods Partial Differ. Equ. 17(3), 199–203 (2001).
[Crossref]

Opt. Commun. (1)

U. Bortolozzo, S. Residori, A. Petrosyan, and J.P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2)317–321 (2006).
[Crossref]

Opt. Digit. Image Process. Fundam. Appl. (1)

M. J. Booth, “Adaptive Optics in Microscopy,” Opt. Digit. Image Process. Fundam. Appl. 365, 2829–2843 (2011).

Opt. Express (2)

Opt. Lett. (1)

Proc SPIE (2)

M. Yellin, “Using membrane mirrors in adaptive optics,” Proc SPIE 75, 97–102 (1976).
[Crossref]

J. W. Hardy, “Adaptive optics-a progress review,” Proc SPIE 1542, 2–17 (1991).
[Crossref]

Other (5)

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
[Crossref]

M. Cardona and P. Yu, Fundamentals of Semiconductors - Physics and Materials Properties (Springer, 2010).

F. Yang, “Membrane modeling of pull-in instability in MEMS sensors and actuators,” in Proceedings of IEEE Sensors (IEEE2002), pp. 1199–1203.
[Crossref]

J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction (Prentice Hall, 1989), 2nd ed.

D. Schroöder, Semiconductor Material and Device Characterization (John Wiley & Sons, 2006), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 PCDMs functioning scheme in DC: a) before illumination, b) after illumination.
Fig. 2
Fig. 2 PCDMs electrical model.
Fig. 3
Fig. 3 Electric simulation of PCDM performances as a function of the illumination intensity with different photoconductors. Left: response time, right: dynamic range.
Fig. 4
Fig. 4 1″ diameter ZnSe based PCDM finite-differences simulation. Left: dynamic range as a function of the applied voltage and light intensity at 100 Hz in conditions of uniform illumination. ZnSe thickness 3 mm, membrane-photoconductor distance 50 μm, membrane tension 50 N/m. The dynamic range is calculated as MlightMdark at the centre of the membrane. Right: section view at various applied voltages. The zones of dielectric breakdown threshold and membrane pull-in are highlighted.
Fig. 5
Fig. 5 Examples of a 1″ diameter ZnSe-based PCDM response to the light patterns depicted at the bottom of the plots on the left. Blue zones: no light, yellow zones: 10 mW/cm2, orange zones: outside the PCDM region. The comparison between approximated model of [8, 13], finite difference (FD) model and our iterative FD model is shown in the sections on the right. Simulations were run with the following parameters: 200 VPP, 100 Hz, ZnSe thickness 3 mm, membrane-photoconductor distance 50 μm, membrane tension 50 N/m.

Tables (1)

Tables Icon

Table 1 Physical characteristics of some selected photoconductors reported from [15, 17].

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 M = P es T
i = C p d V p d t + V p G p = C i d V i d t + V i G i
V i ( t ) = | [ V i ( 0 ) V 0 A i ω + 1 / τ ] exp ( t / τ ) + V 0 A i ω + 1 / τ exp ( i ω t ) |
V i ( 0 ) = V AC C p ( C i + C p )
A = ( G p + i ω C p ) / ( C i + C p )
τ = ε i + ε p ( L i / L p ) σ p ( L i / L p )
| V i RMS ( light ) | / | V i RMS ( dark ) | = | σ p / ε p + i ω σ p ( L i / L p ) ε e + ε p ( L i / L p ) + i ω |
σ light = η τ c I ( μ e + μ h ) e h ν L p
2 M ( ρ , θ ) = P es ( M ( ρ , θ ) ) T

Metrics