Abstract

UV-blocking materials are increasingly important in a variety of applications such as biological shield, cultural relics preservation and radiation hardening of electronic devices. A paramount challenge is the search for approaches that can produce material candidates combing both high ultraviolet absorbing capacity and low activity. Here we introduce an effective self-limited nanocrystallization method for construction of transparent Ce-containing glass composite. The unique crystallization process allows the in situ precipitation of UV absorbing center spanning a wide range of activation temperature, benefiting from the capability of viscous glassy matrix for modulating O2- and F- migrations. Photocatalysis/catalysis and UV-shielding tests firmly demonstrated that the obtained glass composite possesses suppressed photocatalytic/catalytic activity and excellent UV-blocking performance for both organics and bioactive cells. Our results suggest an innovative approach for fabrication of robust UV absorber that should find practical applications in protection of living creatures or cultural relics, especially in the case of direct contact with organic molecules or living cells.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep-UV biological imaging by lanthanide ion molecular protection

Yasuaki Kumamoto, Katsumasa Fujita, Nicholas Isaac Smith, and Satoshi Kawata
Biomed. Opt. Express 7(1) 158-170 (2016)

Investigation of vacuum deposited hybrid coatings of protic organic UV absorbers embedded in a silica matrix used for the UV protection of Polycarbonate glazing

Christiane Weber, Ulrike Schulz, Christian Mühlig, Norbert Kaiser, and Andreas Tünnermann
Opt. Mater. Express 6(11) 3638-3650 (2016)

Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers

Soroush Shabahang, Guangming Tao, Joshua J. Kaufman, and Ayman F. Abouraddy
J. Opt. Soc. Am. B 30(9) 2498-2506 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Zayat, P. Garcia-Parejo, and D. Levy, “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating,” Chem. Soc. Rev. 36(8), 1270–1281 (2007).
    [Crossref] [PubMed]
  2. A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).
  3. H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
    [Crossref]
  4. H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
    [Crossref] [PubMed]
  5. J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
    [Crossref]
  6. X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
    [Crossref]
  7. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
    [Crossref]
  8. N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
    [Crossref] [PubMed]
  9. A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).
  10. N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
    [Crossref]
  11. R. H. Wang, J. H. Xin, and X. M. Tao, “UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics,” Inorg. Chem. 44(11), 3926–3930 (2005).
    [Crossref] [PubMed]
  12. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
    [Crossref] [PubMed]
  13. S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
    [Crossref]
  14. X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
    [Crossref]
  15. M. Kim and R. M. Laine, “One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP),” J. Am. Chem. Soc. 131(26), 9220–9229 (2009).
    [Crossref] [PubMed]
  16. D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
    [Crossref] [PubMed]
  17. D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
    [Crossref] [PubMed]
  18. M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
    [Crossref]
  19. X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
    [Crossref]
  20. G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
    [Crossref]
  21. D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
    [Crossref] [PubMed]
  22. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
    [Crossref] [PubMed]
  23. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
    [Crossref]
  24. L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
    [Crossref]

2015 (3)

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
[Crossref] [PubMed]

2014 (2)

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
[Crossref]

2013 (2)

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

2012 (1)

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

2011 (1)

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

2010 (1)

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

2009 (3)

J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
[Crossref]

M. Kim and R. M. Laine, “One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP),” J. Am. Chem. Soc. 131(26), 9220–9229 (2009).
[Crossref] [PubMed]

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

2008 (1)

H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
[Crossref]

2007 (2)

M. Zayat, P. Garcia-Parejo, and D. Levy, “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating,” Chem. Soc. Rev. 36(8), 1270–1281 (2007).
[Crossref] [PubMed]

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

2005 (3)

A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).

R. H. Wang, J. H. Xin, and X. M. Tao, “UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics,” Inorg. Chem. 44(11), 3926–3930 (2005).
[Crossref] [PubMed]

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

2003 (1)

N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
[Crossref]

2002 (1)

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

1999 (1)

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

1997 (1)

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

1995 (1)

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[Crossref]

Adachi, G.

N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
[Crossref]

Africh, C.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Alcocer, M. J. P.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Ananthaswamy, H. N.

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Bahnemann, D. W.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[Crossref]

Baranchikov, A. Y.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Beall, G. H.

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

Bi, G.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Blinn, K. S.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Body, M.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Bottomley, L. A.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Buzaré, J. Y.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Chen, D.

D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Choi, W.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[Crossref]

Comelli, G.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Cox, P.

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Cui, H.

H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
[Crossref]

Demourgues, A.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Duan, X.

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

El-Sayed, M. A.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

El-Toni, A. M.

A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).

Eperon, G. E.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Esch, F.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Evans, D. G.

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

Evans, R. L.

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Fabris, S.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Feist, M.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Fernandez, A.

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

Földényi, R.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Fornasiero, P.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Garcia-Parejo, P.

M. Zayat, P. Garcia-Parejo, and D. Levy, “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating,” Chem. Soc. Rev. 36(8), 1270–1281 (2007).
[Crossref] [PubMed]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Gu, A.

X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
[Crossref]

Hajba, L.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Halmos, P.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Hayasaka, Y.

A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).

Herz, L. M.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Hirai, H.

N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
[Crossref]

Hirao, K.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Hoffmann, M. R.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[Crossref]

Hong, Z.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Huang, P.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

Imanaka, N.

N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
[Crossref]

Ivanov, V. K.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Ji, Z.

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Kang, B.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Kihn, Y.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Kim, M.

M. Kim and R. M. Laine, “One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP),” J. Am. Chem. Soc. 131(26), 9220–9229 (2009).
[Crossref] [PubMed]

Kovács, M.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Kripke, M. L.

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Laine, R. M.

M. Kim and R. M. Laine, “One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP),” J. Am. Chem. Soc. 131(26), 9220–9229 (2009).
[Crossref] [PubMed]

Lee, J.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Legein, C.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Levy, D.

H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
[Crossref]

M. Zayat, P. Garcia-Parejo, and D. Levy, “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating,” Chem. Soc. Rev. 36(8), 1270–1281 (2007).
[Crossref] [PubMed]

Li, C.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Li, R.

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Li, X.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Liang, G.

X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
[Crossref]

Lima, J. F.

J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
[Crossref]

Liu, M.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Llorens, A.

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

Lloret, E.

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

Loughlin, S. M.

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Lu, H.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Majimel, J.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Makó, É.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Martin, S. T.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[Crossref]

Martins, R. F.

J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
[Crossref]

Masui, T.

N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
[Crossref]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Miura, K.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Momose, S.

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Montardi, Y.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Montini, T.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Neri, C. R.

J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
[Crossref]

Parejo, P. G.

H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
[Crossref]

Park, S.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Picouet, P. A.

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

Pinckney, L. R.

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

Polezhaeva, O. S.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Qiu, J.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Rosei, R.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Sato, T.

A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Serra, O. A.

J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
[Crossref]

Shaporev, A. S.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Shcherbakov, A. B.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Snaith, H. J.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Spivak, N. Y.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Sronek, L.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Stranks, S. D.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Tao, X. M.

R. H. Wang, J. H. Xin, and X. M. Tao, “UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics,” Inorg. Chem. 44(11), 3926–3930 (2005).
[Crossref] [PubMed]

Tóth, J.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Trbojevich, R.

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

Tressaud, A.

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Tretyakov, Y. D.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Ullrich, S. E.

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Valicsek, Z.

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Wan, Z.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
[Crossref] [PubMed]

Wang, R. H.

R. H. Wang, J. H. Xin, and X. M. Tao, “UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics,” Inorg. Chem. 44(11), 3926–3930 (2005).
[Crossref] [PubMed]

Xin, J. H.

R. H. Wang, J. H. Xin, and X. M. Tao, “UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics,” Inorg. Chem. 44(11), 3926–3930 (2005).
[Crossref] [PubMed]

Xu, B.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Xu, S.

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

Yabe, S.

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Yamashita, M.

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Yang, G.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Yin, S.

A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Yoo, S.

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Yoshida, S.

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Yu, H.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Yuan, L.

X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
[Crossref]

Zayat, M.

H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
[Crossref]

M. Zayat, P. Garcia-Parejo, and D. Levy, “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating,” Chem. Soc. Rev. 36(8), 1270–1281 (2007).
[Crossref] [PubMed]

Zhang, F.

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

Zhao, X.

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

Zholobak, N. M.

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Zhou, L.

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

Zhou, S.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Zhou, Y.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, and Y. Zhou, “Optical spectroscopy of Cr³⁺-doped transparent nano-glass ceramics for lifetime-based temperature sensing,” Opt. Lett. 40(15), 3607–3610 (2015).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
[Crossref]

Adv. Funct. Mater. (1)

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Adv. Mater. (1)

H. Cui, M. Zayat, P. G. Parejo, and D. Levy, “Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates,” Adv. Mater. 20(1), 65–68 (2008).
[Crossref]

Appl. Surf. Sci. (1)

J. F. Lima, R. F. Martins, C. R. Neri, and O. A. Serra, “ZnO:CeO2-based nanopowders with low catalytic activity as UV absorbers,” Appl. Surf. Sci. 255(22), 9006–9009 (2009).
[Crossref]

Chem. Mater. (3)

X. Zhao, F. Zhang, S. Xu, D. G. Evans, and X. Duan, “From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product,” Chem. Mater. 22(13), 3933–3942 (2010).
[Crossref]

N. Imanaka, T. Masui, H. Hirai, and G. Adachi, “Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials,” Chem. Mater. 15(12), 2289–2291 (2003).
[Crossref]

L. Sronek, J. Majimel, Y. Kihn, Y. Montardi, A. Tressaud, M. Feist, C. Legein, J. Y. Buzaré, M. Body, and A. Demourgues, “New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series,” Chem. Mater. 19(21), 5110–5121 (2007).
[Crossref]

Chem. Rev. (1)

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[Crossref]

Chem. Soc. Rev. (1)

M. Zayat, P. Garcia-Parejo, and D. Levy, “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating,” Chem. Soc. Rev. 36(8), 1270–1281 (2007).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

M. Kovács, Z. Valicsek, J. Tóth, L. Hajba, É. Makó, P. Halmos, and R. Földényi, “Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction,” Colloids Surf. A Physicochem. Eng. Asp. 352(1–3), 56–62 (2009).
[Crossref]

Dalton Trans. (1)

D. Chen, Y. Zhou, Z. Wan, Z. Ji, and P. Huang, “Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping,” Dalton Trans. 44(12), 5288–5293 (2015).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

X. Li, J. Lee, K. S. Blinn, D. Chen, S. Yoo, B. Kang, L. A. Bottomley, M. A. El-Sayed, S. Park, and M. Liu, “High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials,” Energy Environ. Sci. 7(1), 306–310 (2014).
[Crossref]

Inorg. Chem. (1)

R. H. Wang, J. H. Xin, and X. M. Tao, “UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics,” Inorg. Chem. 44(11), 3926–3930 (2005).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc. 82(1), 5–16 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kim and R. M. Laine, “One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP),” J. Am. Chem. Soc. 131(26), 9220–9229 (2009).
[Crossref] [PubMed]

J. Mater. Chem. (1)

A. M. El-Toni, S. Yin, Y. Hayasaka, and T. Sato, “Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique,” J. Mater. Chem. 15(12), 1293–1297 (2005).

J. Mater. Chem. A Mater. Energy Sustain. (1)

X. Zhu, L. Yuan, G. Liang, and A. Gu, “Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanicaland thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11286–11298 (2014).
[Crossref]

J. Photochem. Photobiol. B (1)

N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, A. S. Shaporev, O. S. Polezhaeva, A. Y. Baranchikov, N. Y. Spivak, and Y. D. Tretyakov, “UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions,” J. Photochem. Photobiol. B 102(1), 32–38 (2011).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, “UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes,” Mater. Chem. Phys. 75(1–3), 39–44 (2002).
[Crossref]

Nat. Med. (1)

H. N. Ananthaswamy, S. M. Loughlin, P. Cox, R. L. Evans, S. E. Ullrich, and M. L. Kripke, “Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens,” Nat. Med. 3(5), 510–514 (1997).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er3+:K(Y(1-xYbx)3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Science (2)

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, “Electron localization determines defect formation on ceria substrates,” Science 309(5735), 752–755 (2005).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Trends Food Sci. Technol. (1)

A. Llorens, E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez, “Metallic-based micro and nanocomposites in food contact materials and active food packaging,” Trends Food Sci. Technol. 24(1), 19–29 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic presentations of O2- and F- migration and the corresponding qualitative energetics in flowable fluid (a) and viscous solid (b), respectively. EFf , EOf , EFs and EOs represent the activation barriers for O2- and F- migrations in flowable fluid and viscous solid, respectively.
Fig. 2
Fig. 2 (a) DTA and TG curves of the precursor glass at a heating rate of 10 °C/min. (b) The plots of ln(Tx 2/α) versus 1/Tx for the precursor glass. The inset table shows the crystallization temperatures of CeF3 and CeO2:F crystalline phase estimated from DTA curves at various heating rate.
Fig. 3
Fig. 3 (a,b) XRD patterns of CeF3 glass and corresponding composites heat-treated at various temperatures. GC400, GC500, GC600 and GC900 represent the composites heat-treated at 400, 500, 600 and 900 °C, respectively. (c) Raman spectra of CeF3 glass and composites treated at 400 and 600 °C. (d) TEM image of CeO2:F composite treated at 900 °C. Inset: photographs of CeF3 glass (left), CeF3 composite (middle) and CeO2:F composite (right), respectively. (e) High-resolution TEM image of CeO2:F composite treated at 900 °C and schematic presentation of phase-transition from CeF3 to CeO2:F. (f) EDS spectrum of CeO2:F film. Inset: Cross-sectional SEM image of CeO2:F film on a silicon chip.
Fig. 4
Fig. 4 (a) Schematic illustrating diagram of low photocatalytic/catalytic activity of the CeO2:F composite. (b) (1-6) Photocatalytic degradation of methylene blue by the samples of commercial TiO2 (1-3) and CeO2:F composite (4-6) for 2 h (1,4), 5 h (2,5), and 12 h (3,6). Inset: the absorption spectra of methylene blue for 5 h. (7-9) Catalytic oxidation of methylene blue by the samples of CeO2 (7), CeO2 glass composite (8) and CeO2:F glass composite for 12 h (9). (c) UV-visible transmittance spectrum of CeO2:F composite film. The inset pictures show the photo-degradation of Rhodamine B doped paper after irradiation with a UV laser at 375 nm in an unprotected area (left) and in area protected with CeO2:F composite film (right).
Fig. 5
Fig. 5 (a) UV-induced morphological changes of MGC cells with/without protection by the CeO2:F composite film. (b) Quantification of survival cells under UV irradiation with/without protection by the CeO2:F composite film.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ζ = 1 C / C 0 * 1 00 % = 1 A / A 0 * 1 00 %
η = N / N 0 * 1 00 %
ln ( T x 2 / α ) = E / R T x + const
σ c [ ( 2 × 1 0 3 / 3 ) k 4 ( r + W / 2 ) 3 ] ( n n ) 2

Metrics