Abstract

Glass modifications on the nanoscale occurring after femtosecond laser irradiation give rise to strong form birefringence. This birefringence is related to the so-called nanogratings. By observing induced tracks in various germanosilicate glasses using scanning electron microscopy (SEM), we demonstrate that porous nanoplanes can be formed not only in silicate glasses with anomalous density behaviour with fictive temperature, but also within glassy systems with normal density behaviour. The nanoporous oxide is likely due to fast decomposition and volume expansion along with glassy condensation of the oxide creating extreme conditions far from equilibrium. The porosity filling factor and the average pore size significantly decreases when increasing the GeO2 content. Precise laser translation and control of these nanoporous structures allows arbitrary milling, tuning and positioning within the glass, an important top-down approach to control micro and nanostructure and consequently optical properties for molecular sieves, catalysts, composites and optoelectronics applications. At a fundamental level, femtosecond laser milling of glass allows access to glassy regimes that may have no obvious natural counterpart.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]

Lena Bressel, Dominique de Ligny, Camille Sonneville, Valérie Martinez, Vygantas Mizeikis, Ričardas Buividas, and Saulius Juodkazis
Opt. Mater. Express 1(4) 605-613 (2011)

Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky
Opt. Mater. Express 1(4) 711-723 (2011)

Femtosecond laser written nanostructures in Ge-doped glasses

Felix Zimmermann, Matthieu Lancry, Anton Plech, Sören Richter, B. Hari Babu, Bertrand Poumellec, Andreas Tünnermann, and Stefan Nolte
Opt. Lett. 41(6) 1161-1164 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
    [Crossref]
  2. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001).
    [Crossref]
  3. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  4. C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  5. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
    [Crossref]
  6. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
    [Crossref]
  7. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  8. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [Crossref] [PubMed]
  9. M. Beresna, “Polarization engineering with ultrafast laser writing in transparent media,” (University of Southampton, 2012).
  10. M. Beresna, M. Geceviçius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited],” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  11. C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [Crossref]
  12. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [Crossref] [PubMed]
  13. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
    [Crossref]
  14. P. G. Kazansky, E. Bricchi, Y. Shimotsuma, and K. Hirao, “Self-Assembled Nanostructures and Two-Plasmon Decay in Femtosecond Processing of Transparent Materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ3.
    [Crossref]
  15. M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
    [Crossref]
  16. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  17. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
    [Crossref]
  18. V. Oliveira, S. P. Sharma, P. Herrero, and R. Vilar, “Transformations induced in bulk amorphous silica by ultrafast laser direct writing,” Opt. Lett. 38(23), 4950–4953 (2013).
    [Crossref] [PubMed]
  19. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
    [Crossref]
  20. F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
    [Crossref]
  21. J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” in Asia Pacific Optical Sensors Conference, (International Society for Optics and Photonics, 2012), arXiv:1109.1084 (2011).
  22. M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. (2011).
  23. A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
    [Crossref]
  24. M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
    [Crossref] [PubMed]
  25. D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Pr I Llc, 2004).
  26. M. E. B. Younes, D. C. Grégoire, and C. L. Chakrabarti, “Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry,” J. Anal. At. Spectrom. 14, 1703–1708 (1999).
    [Crossref]
  27. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
    [Crossref] [PubMed]
  28. M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express 2(12), 1809–1821 (2012).
    [Crossref]
  29. T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
    [Crossref]
  30. Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” International Journal of Applied Glass Science 4(3), 182–191 (2013).
    [Crossref]
  31. M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
    [Crossref]

2015 (1)

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

2014 (2)

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

2013 (6)

2012 (3)

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express 2(12), 1809–1821 (2012).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

2011 (1)

2008 (2)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

2007 (1)

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

2006 (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

2005 (2)

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

2004 (2)

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2001 (2)

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001).
[Crossref]

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1999 (1)

M. E. B. Younes, D. C. Grégoire, and C. L. Chakrabarti, “Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry,” J. Anal. At. Spectrom. 14, 1703–1708 (1999).
[Crossref]

1995 (1)

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

Agarwal, A.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

Asai, T.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Bellouard, Y.

Beresna, M.

Bhardwaj, V.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Bhardwaj, V. R.

Bourguignon, B.

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express 2(12), 1809–1821 (2012).
[Crossref]

Bricchi, E.

Brisset, F.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Brodeur, A.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Canning, J.

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Chakrabarti, C. L.

M. E. B. Younes, D. C. Grégoire, and C. L. Chakrabarti, “Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry,” J. Anal. At. Spectrom. 14, 1703–1708 (1999).
[Crossref]

Champion, A.

Cook, K.

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Corkum, P.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Corkum, P. B.

Davis, K. M.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

Desmarchelier, R.

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

Döring, S.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

Geceviçius, M.

Gertsvolf, M.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

Grégoire, D. C.

M. E. B. Younes, D. C. Grégoire, and C. L. Chakrabarti, “Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry,” J. Anal. At. Spectrom. 14, 1703–1708 (1999).
[Crossref]

Guizard, S.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001).
[Crossref]

Heinrich, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Herrero, P.

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Kavokin, A. V.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

Kazansky, P.

Kazansky, P. G.

Kazuyuki, H.

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” International Journal of Applied Glass Science 4(3), 182–191 (2013).
[Crossref]

Klappauf, B. G.

Kley, E. B.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Kubota, S.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Kurita, T.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Lancry, M.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express 2(12), 1809–1821 (2012).
[Crossref]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. (2011).

Mao, S.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Martin, P.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001).
[Crossref]

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Miese, C.

Miura, K.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” International Journal of Applied Glass Science 4(3), 182–191 (2013).
[Crossref]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Murata, A.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Nolte, S.

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Oliveira, V.

Peschel, U.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Petite, G.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Plech, A.

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Poulin, J. Ä.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express 2(12), 1809–1821 (2012).
[Crossref]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. (2011).

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Quéré, F.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001).
[Crossref]

Rajeev, P.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Rayner, D.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Rayner, D. M.

Régnier, E.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. (2011).

Richter, S.

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Russo, R.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Sakakura, M.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Sharma, S. P.

Shimotsuma, Y.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” International Journal of Applied Glass Science 4(3), 182–191 (2013).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Simova, E.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Steinert, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Takebe, H.

Taylor, R.

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Taylor, R. S.

Taylor, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

Tomozawa, M.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

Tunnermann, A.

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Tünnermann, A.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Vilar, R.

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Withford, M. J.

Yang, W.

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express 21(4), 3959–3968 (2013).
[Crossref] [PubMed]

M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express 2(12), 1809–1821 (2012).
[Crossref]

Younes, M. E. B.

M. E. B. Younes, D. C. Grégoire, and C. L. Chakrabarti, “Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry,” J. Anal. At. Spectrom. 14, 1703–1708 (1999).
[Crossref]

Zhang, J.

Zimmermann, F.

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Appl. Phys. Lett. (3)

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101, 053120 (2012).
[Crossref]

F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

EPL (1)

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001).
[Crossref]

International Journal of Applied Glass Science (1)

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” International Journal of Applied Glass Science 4(3), 182–191 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

J. Anal. At. Spectrom. (1)

M. E. B. Younes, D. C. Grégoire, and C. L. Chakrabarti, “Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry,” J. Anal. At. Spectrom. 14, 1703–1708 (1999).
[Crossref]

J. Non-Cryst. Solids (2)

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185(1-2), 191–198 (1995).
[Crossref]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[Crossref]

Laser Photonics Rev. (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser Photonics Rev. 6(6), 787–792 (2012).
[Crossref]

Meas. Sci. Technol. (1)

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Micromachines (Basel) (1)

M. Lancry, R. Desmarchelier, K. Cook, J. Canning, and B. Poumellec, “Compact birefringent waveplates photo-induced in silica by femtosecond laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Other (5)

M. Beresna, “Polarization engineering with ultrafast laser writing in transparent media,” (University of Southampton, 2012).

P. G. Kazansky, E. Bricchi, Y. Shimotsuma, and K. Hirao, “Self-Assembled Nanostructures and Two-Plasmon Decay in Femtosecond Processing of Transparent Materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ3.
[Crossref]

D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Pr I Llc, 2004).

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” in Asia Pacific Optical Sensors Conference, (International Society for Optics and Photonics, 2012), arXiv:1109.1084 (2011).

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Densities, ρ, of heat-treated PCVD germanosilicate glasses according to their fictive temperature, Tfic. Black straight lines are linear fitting functions obtained by χ2 minimization method.
Fig. 2
Fig. 2 Retardance, R, according the laser pulse energy, E, in various germanosilicate glass samples. The laser parameters were 1030 nm, 300 fs, 0.6 NA, 500 kHz, 500 μm/s, Xx configuration. The scanning direction was horizontal and oriented at 36° off the pulse front tilt. The linear polarisation was parallel to the writing direction.
Fig. 3
Fig. 3 Secondary electrons images of the sample’s cross-section for Xy writing (orthogonal configuration). The laser parameters were: E = 0.5 μJ/pulse, 1030 nm, 300 fs, rep. rate = 500 kHz, v = 500 μm/s; i.e. 103 pulses/µm. A focusing aspheric lens of 0.6 NA was used.
Fig. 4
Fig. 4 Secondary electrons images of laser track cross-section for Xx writing (parallel configuration). The laser parameters were: E = 0.5 μJ/pulse, 1030 nm, 300 fs, rep. rate = 500 kHz, v = 500 μm/s i.e. 103 pulses/µm and using a 0.6 NA aspheric lens.
Fig. 5
Fig. 5 Simplify scheme of differential volume changes in the high energy regions of the focal volume. The focal volume may expand rapidly under initial excitation. The preferred condensation at the troughs and peaks of the plasmon interference fringes, along with the laser direction, give rise to nanoplanar structure and will affect the stress gradients, dynamic expansion and structural orientation around the various axes of the processed volume.

Metrics