Abstract

Chirality routinely occurs in 3D metamaterials (MMs) lacking mirror symmetry or quasi 2D planar MMs lacking in-plane mirror symmetry. However, realization of such asymmetric MMs in the high frequency region remains challenging since it is hard to precisely control the asymmetric geometry of the ultrasmall meta-atom. Moreover, another limiting factor of those MMs is their weak extrinsically 2D-chiral effect such as circular polarization conversion difference (CPCD). Here, we theoretically demonstrate that a highly symmetric metasurface (MS), also known as 2D planar MMs, can produce a dual-band strong extrinsic 2D chirality: CPCD in the THz region under off-normal incidence. Our MS consists of an array of circular holes penetrating through a metal/dielectric/metal (MDM) trilayer, where the holes occupy the sites of a rectangular lattice. The CPCD is due to the mutual orientation of circular holes array (CHA) and oblique incident wave. Meanwhile, we show that the CPCD in the single metal layer CHA disappears owing to the absence of magnetic dipolar moment that can significantly enhance chiral effects. The highly symmetric achiral MS with the large CPCD may be operated as flat lenses, chiral sensing and highly efficient polarization converters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study of tunable chirality from graphene integrated achiral metasurfaces

Tun Cao, Yang Li, Xinyu Zhang, and Yang Zou
Photon. Res. 5(5) 441-449 (2017)

Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials

Tun Cao, Chenwei Wei, and Lei Zhang
Opt. Mater. Express 4(8) 1526-1534 (2014)

Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene

Tun Cao, Chen-Wei Wei, Li-Bang Mao, and Shuai Wang
Opt. Express 23(14) 18620-18629 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009).
    [Crossref]
  2. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
    [Crossref] [PubMed]
  3. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  4. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  5. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  6. S. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
    [Crossref]
  7. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
    [Crossref]
  8. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
    [Crossref]
  9. R. L. Fullman and D. L. Wood, “Origin of spiral eutectic structures,” Acta Metall. 2(2), 188–193 (1954).
    [Crossref]
  10. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
    [Crossref] [PubMed]
  11. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  12. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
    [Crossref] [PubMed]
  13. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  14. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  15. S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
    [Crossref]
  16. A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” Chem. Soc. A 0, 1988–1991 (1971).
    [Crossref]
  17. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004).
  18. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref] [PubMed]
  19. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
    [Crossref]
  20. C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
    [Crossref]
  21. X. C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
    [Crossref] [PubMed]
  22. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  23. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  24. L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  25. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  26. S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
    [Crossref]
  27. K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
    [Crossref] [PubMed]
  28. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  29. X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  30. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
    [Crossref] [PubMed]
  31. C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
    [Crossref]
  32. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  33. M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
    [Crossref]
  34. M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
    [Crossref] [PubMed]
  35. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref] [PubMed]
  36. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
    [Crossref]
  37. F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
    [Crossref]
  38. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  39. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
    [Crossref] [PubMed]
  40. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
    [Crossref] [PubMed]
  41. A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
    [Crossref]
  42. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [Crossref] [PubMed]
  43. T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
    [Crossref] [PubMed]
  44. M. Lapine and S. A. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1(1), 3–11 (2007).
    [Crossref]
  45. V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” Opt. Lett. 34(5), 632–634 (2009).
    [Crossref] [PubMed]
  46. T. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express 4(8), 1526–1534 (2014).
    [Crossref]
  47. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref] [PubMed]
  48. Dow Chemicals Product datasheet. [Online]. Available: http://www.dow.com/cyclotene/solution/highfreq.htm .
  49. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
    [Crossref]
  50. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]

2015 (7)

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

2014 (5)

T. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express 4(8), 1526–1534 (2014).
[Crossref]

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
[Crossref] [PubMed]

S. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

2013 (2)

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

2012 (5)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

2010 (4)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[Crossref] [PubMed]

2009 (7)

V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” Opt. Lett. 34(5), 632–634 (2009).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

2008 (3)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

2007 (2)

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

M. Lapine and S. A. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1(1), 3–11 (2007).
[Crossref]

2006 (3)

C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2005 (1)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

2004 (1)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

2002 (1)

X. C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
[Crossref] [PubMed]

1971 (1)

A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” Chem. Soc. A 0, 1988–1991 (1971).
[Crossref]

1954 (1)

R. L. Fullman and D. L. Wood, “Origin of spiral eutectic structures,” Acta Metall. 2(2), 188–193 (1954).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Al-Naib, I. A. I.

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Boyd, R. W.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Buckingham, A. D.

A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” Chem. Soc. A 0, 1988–1991 (1971).
[Crossref]

Cai, B.

Canfield, B. K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Cao, T.

T. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express 4(8), 1526–1534 (2014).
[Crossref]

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chen, H. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Cheng, Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Cho, M.

S. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Cui, T. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Danner, A.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

Decker, M.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Dionne, J. A.

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

Dolgaleva, K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Dunn, M. B.

A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” Chem. Soc. A 0, 1988–1991 (1971).
[Crossref]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Feng, C.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Fullman, R. L.

R. L. Fullman and D. L. Wood, “Origin of spiral eutectic structures,” Acta Metall. 2(2), 188–193 (1954).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Gao, D.

Gao, L.

Gao, L. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

García-Etxarri, A.

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Garcia-Vidal, F. J.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Han, J.

He, Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Helgert, C.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

Huang, K.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

Ishii, S.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jefimovs, K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Jiang, W. X.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

Jiao, J.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

Jin, B. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kauranen, M.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Kildishev, A. V.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Kivshar, Y. S.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Klein, M. W.

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Koch, M.

Kruk, S. S.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

Lapine, M.

M. Lapine and S. A. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1(1), 3–11 (2007).
[Crossref]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Lee, S.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

Li, H.

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, L.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

Li, L. W.

C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
[Crossref]

Li, X.

Li, Y.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
[Crossref] [PubMed]

Liang, L. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Linden, S.

Liu, H.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

Liu, S.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W. W.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Luk’yanchuk, B.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

Ma, H. F.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

Ma, S. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Maier, S. A.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Mao, L.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
[Crossref] [PubMed]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martínez, A.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Mehmood, M. Q.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Mei, S. T.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Neshev, D. N.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

Ni, X. J.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

O’Hara, J. F.

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Park, Q.-H.

S. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

Park, Y.-S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Pertsch, T.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Poddubny, A. N.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Powell, D. A.

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Qiu, C. W.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

M. Wang, H. Li, D. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express 23(13), 16546–16553 (2015).
[Crossref] [PubMed]

C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Shi, J.

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Shi, J. H.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Singh, R.

Smirnova, E.

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Svirko, Y.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Taylor, A. J.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Teng, J.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

Teng, J. H.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tretyakov, S. A.

M. Lapine and S. A. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1(1), 3–11 (2007).
[Crossref]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Turunen, J.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Volkov, S. N.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Wang, F.

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Wang, M.

Wang, Z.

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Wang, Z. B.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

Wegener, M.

Wei, C.

T. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express 4(8), 1526–1534 (2014).
[Crossref]

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
[Crossref] [PubMed]

Wen, Q. Y.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wood, D. L.

R. L. Fullman and D. L. Wood, “Origin of spiral eutectic structures,” Acta Metall. 2(2), 188–193 (1954).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Wu, P. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Xiao, S.

Xu, J.

Yang, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yannopapas, V.

Yao, H. Y.

C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
[Crossref]

Yao, J. Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yoo, S.

S. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zhang, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

T. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express 4(8), 1526–1534 (2014).
[Crossref]

Zhang, S.

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zhang, X. C.

X. C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
[Crossref] [PubMed]

Zhao, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Zhou, L.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Zhu, Z.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zouhdi, S.

C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
[Crossref]

Acta Metall. (1)

R. L. Fullman and D. L. Wood, “Origin of spiral eutectic structures,” Acta Metall. 2(2), 188–193 (1954).
[Crossref]

Appl. Phys. Lett. (3)

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

Chem. Soc. A (1)

A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” Chem. Soc. A 0, 1988–1991 (1971).
[Crossref]

IET Microw. Antennas Propag. (1)

M. Lapine and S. A. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1(1), 3–11 (2007).
[Crossref]

J. Appl. Phys. (2)

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112(7), 073522 (2012).
[Crossref]

J. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

Laser Photonics Rev. (1)

M. Q. Mehmood, H. Liu, K. Huang, S. T. Mei, A. Danner, B. Luk’yanchuk, S. Zhang, J. H. Teng, S. A. Maier, and C. W. Qiu, “Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width,” Laser Photonics Rev. 9(6), 674–681 (2015).
[Crossref]

Light Sci. Appl. (2)

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Nano Lett. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Nat. Commun. (3)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6, 7059 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285(10-11), 2750–2754 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Med. Biol. (1)

X. C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
[Crossref] [PubMed]

Phys. Rev. A (1)

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A 79(4), 043819 (2009).
[Crossref]

Phys. Rev. B (5)

S. Yoo, M. Cho, and Q.-H. Park, “Globally enhanced chiral field generation by negative-index metamaterials,” Phys. Rev. B 89(16), 161405 (2014).
[Crossref]

S. S. Kruk, A. N. Poddubny, D. A. Powell, C. Helgert, M. Decker, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Polarization properties of optical metasurfaces of different symmetries,” Phys. Rev. B 91(19), 195401 (2015).
[Crossref]

C. W. Qiu, L. W. Li, H. Y. Yao, and S. Zouhdi, “Properties of Faraday chiral media: Green dyadics and negative refraction,” Phys. Rev. B 74(11), 115110 (2006).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013).
[Crossref]

Phys. Rev. Lett. (7)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Sci. Rep. (2)

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4, 7442 (2014).
[Crossref] [PubMed]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Other (2)

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004).

Dow Chemicals Product datasheet. [Online]. Available: http://www.dow.com/cyclotene/solution/highfreq.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the MDM trilayer perforated with a rectangular array of circular holes suspended in air. The thicknesses of the top Au layer, BCB spacer, and bottom Au layer are 1, 35, and 1μm, respectively. The whole structure is suspended in air. (b) Illustration of the rectangular lattice of the circular holes array, where the lattice constant in x direction is Lx = 360μm and in y direction is Ly = 180μm and the hole diameters are d = 144μm. (c) Demonstration of the wavevector (k), the vector normal to the surface (n), the two primitive lattice vectors (a or b) and the rotation angle φ in x–y plane, the components are marked in red. β is a cross-section through the structure along the x-z plane.
Fig. 2
Fig. 2 Spectra for right and left circularly polarized light incident at angle θ = 45°, φ = 15° (a) the spectra of t and t++ ; (b) the spectra of t+- and t-+ ; (c) the spectra of CPCD = t-+- t+- of the MDM-CHA with Lx = 360μm and Ly = 180μm; (d) CPCD with different ratios of Ly /Lx in the MDM-CHA.
Fig. 3
Fig. 3 (a) Circular polarization conversion difference (CPCD) for θ = 45°, φ = 15° with different thicknesses of BCB dielectric interlayer in the MDM-CHA. (b) CPCD for θ = 45°, φ = 15° with different thicknesses of Au layer in the MDM-CHA.
Fig. 4
Fig. 4 Circular polarization conversion difference (CPCD) for (a) θ = 45° incidence with different values of φ; (b) φ = 15° incidence with different values of θ; (c) a 2D diagram of CPCD against θ and φ at a fixed frequency of 1.28 THz; (d) a dependence of the CPCD on φ at 1.28 THz and θ = 45°.
Fig. 5
Fig. 5 (a) Schematic of the single Au layer perforated with rectangular array of circular holes suspended in air. The thicknesses of Au layer is 1μm.Spectra for right and left circularly polarized light incident at angle θ = 45° and φ = 15° (b) the spectra of t+- and t-+ for the CHA based on single Au layer; (c) spectra of CPCD for both MDM-CHA and single Au layer CHA with Lx = 360μm and Ly = 180μm.
Fig. 6
Fig. 6 (a-d) H field intensity distribution of the MDM-CHA along the β plane at θ = 45° and φ = 15° where f = 1.28 THz for the (a) RCP incident wave, (b) LCP incident wave; f = 1.31 THz for the (c) RCP incident wave, (d) LCP incident wave. (e-f) H field intensity distribution of the single Au layer CHA along the β plane at θ = 45° and φ = 15° where f = 1.22 THz for the (e) RCP incident wave, (f) LCP incident wave.

Metrics