Abstract

We have designed a novel nano-rectenna composed of a square spiral nanoantenna and a rectifier (Au-TiOx-Ti diode) for harvesting infrared energy and its conversion. The three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method is used at infrared frequencies (5~30 μm) to analyze the optoelectronic properties of the proposed nano-rectenna. The simulation results indicate that three types of resonance wavelengths and local field enhancement are significantly influenced by the geometric parameters of the square spiral nanoantenna, as well as the structure and composition of the dielectric layer. An output current of the designed nano-rectenna is approximately at tens of nA with an incident electric field intensity of 1 V/m. Moreover, the photoelectric conversion efficiency is calculated to reach about several percentages. The mechanism on the optoelectronic performance of the nano-rectenna is deeply discussed. As a result, the optimized structure may lead to important applications in infrared detectors, novel cell devices and integrated photonic circuits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conversion efficiency of broad-band rectennas for solar energy harvesting applications

Edgar Briones, Javier Alda, and Francisco Javier González
Opt. Express 21(S3) A412-A418 (2013)

Optimized tapered dipole nanoantenna as efficient energy harvester

Youssef M. El-Toukhy, Mohamed Hussein, Mohamed Farhat O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya
Opt. Express 24(14) A1107-A1122 (2016)

Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna

Huaqiao Zhao, Huotao Gao, Ting Cao, and Boya Li
Opt. Express 26(2) A178-A191 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quant. 20(6), 70–78 (2014).
  2. A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Analysis and modeling of infrared solar rectennas,” IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013).
  3. N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
    [PubMed]
  4. T. G. Habteyes, S. Dhuey, K. I. Kiesow, and A. Vold, “Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging,” Opt. Express 21(18), 21607–21617 (2013).
    [PubMed]
  5. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [PubMed]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
  7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [PubMed]
  8. P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
    [PubMed]
  9. B. Govoreanu, C. Adelmann, and A. Redolfi, “High-performance metal-insulator-metal tunnel diode selectors,” IEEE Electron Device Lett. 35(1), 63–65 (2014).
  10. C. Fumeaux, W. Herrmann, and F. K. Kneubühl, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
  11. E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
    [PubMed]
  12. J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
  13. M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification,” Sci. Rep. 4, 4270 (2014).
    [PubMed]
  14. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28(7), 1341–1348 (2011).
    [PubMed]
  15. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
    [PubMed]
  16. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21(1), 1344–1352 (2013).
    [PubMed]
  17. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17(8), 5925–5932 (2009).
    [PubMed]
  18. Z. Yi, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, P. Wu, X. Jiang, Y. Yi, and Y. Tang, “Study of strong dipole and quadrupole plasmon resonance in Ag nanorings antenna,” Opt. Mater. Express 5(2), 210–217 (2015).
  19. K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).
  20. K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
    [PubMed]
  21. J. R. Mruk, N. Sutton, and D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antenn. Propag. 62(2), 968–972 (2014).
  22. M. Gallo, L. Mescia, and O. Losito, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
  23. R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, “Spiral-type terahertz antennas and the manifestation of the Mushiake principle,” Opt. Express 17(12), 9971–9980 (2009).
    [PubMed]
  24. B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19(11), 10049–10056 (2011).
    [PubMed]
  25. V. Varlamava, F. Palma, and P. Nenzi, “Electric field enhancement in 3-D tapered helix antenna for terahertz applications,” IEEE T. Thz. Sci. Techn. 4(3), 360–367 (2014).
  26. E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(103), A412–A418 (2013).
    [PubMed]
  27. E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).
  28. G. Rui, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna,” Opt. Express 20(17), 19297–19304 (2012).
    [PubMed]
  29. U. Saynak, “Novel rectangular spiral antennas,” Izmir Inst. Techn, M.S. Thesis, (2007).
  30. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [PubMed]
  31. X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).
  32. Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).
  33. F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
  34. F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
  35. G. Rui, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna,” Opt. Express 20(17), 19297–19304 (2012).
    [PubMed]
  36. A. C. Maggs and V. Rossetto, “Local simulation algorithms for Coulomb interactions,” Phys. Rev. Lett. 88(19), 196402 (2002).
    [PubMed]
  37. J. Aizpurua, G. W. Bryant, and L. J. Richter, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
  38. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
    [PubMed]
  39. I. Wilke, Y. Oppliger, and W. Herrmann, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58(4), 329–341 (1994).
  40. T. R. Lin, T. R. S. W. Chang, and S. L. Chuang, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
  41. J. C. Li, C. L. Wang, and H. Peng, “Vibrational and thermal properties of small diameter silicon nanowires,” J. Appl. Phys. 108(6), 063702 (2010).
  42. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
    [PubMed]
  43. Y. Amin, Q. Chen, and L. R. Zheng, “Design and fabrication of wideband archimedean spiral antenna based ultra-low cost “green” modules for RFID sensing and wireless applications,” Prog. Electromagnetics Res. 130, 241–256 (2012).
  44. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
  45. S. V. Zhukovsky, V. E. Babicheva, and A. V. Uskov, “Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells,” Plasmonics 9(2), 283–289 (2014).
  46. D. K. Gramotnev, A. Pors, and M. Willatzen, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
  47. I. E. Protsenko and A. V. Uskov, “Photoemission from metal nanoparticles,” Phys. Uspekhi 55(5), 508 (2012).
  48. M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
  49. J. W. Liaw, “Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission,” IEEE J. Sel. Top. Quant. 14(6), 1441–1447 (2008).

2015 (3)

Z. Yi, J. Luo, Y. Yi, X. Kang, X. Ye, P. Bi, P. Wu, X. Jiang, Y. Yi, and Y. Tang, “Study of strong dipole and quadrupole plasmon resonance in Ag nanorings antenna,” Opt. Mater. Express 5(2), 210–217 (2015).

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).

2014 (9)

J. R. Mruk, N. Sutton, and D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antenn. Propag. 62(2), 968–972 (2014).

V. Varlamava, F. Palma, and P. Nenzi, “Electric field enhancement in 3-D tapered helix antenna for terahertz applications,” IEEE T. Thz. Sci. Techn. 4(3), 360–367 (2014).

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quant. 20(6), 70–78 (2014).

B. Govoreanu, C. Adelmann, and A. Redolfi, “High-performance metal-insulator-metal tunnel diode selectors,” IEEE Electron Device Lett. 35(1), 63–65 (2014).

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification,” Sci. Rep. 4, 4270 (2014).
[PubMed]

S. V. Zhukovsky, V. E. Babicheva, and A. V. Uskov, “Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells,” Plasmonics 9(2), 283–289 (2014).

2013 (5)

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21(1), 1344–1352 (2013).
[PubMed]

A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Analysis and modeling of infrared solar rectennas,” IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013).

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

T. G. Habteyes, S. Dhuey, K. I. Kiesow, and A. Vold, “Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging,” Opt. Express 21(18), 21607–21617 (2013).
[PubMed]

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(103), A412–A418 (2013).
[PubMed]

2012 (8)

G. Rui, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna,” Opt. Express 20(17), 19297–19304 (2012).
[PubMed]

M. Gallo, L. Mescia, and O. Losito, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).

K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
[PubMed]

G. Rui, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna,” Opt. Express 20(17), 19297–19304 (2012).
[PubMed]

D. K. Gramotnev, A. Pors, and M. Willatzen, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).

I. E. Protsenko and A. V. Uskov, “Photoemission from metal nanoparticles,” Phys. Uspekhi 55(5), 508 (2012).

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[PubMed]

Y. Amin, Q. Chen, and L. R. Zheng, “Design and fabrication of wideband archimedean spiral antenna based ultra-low cost “green” modules for RFID sensing and wireless applications,” Prog. Electromagnetics Res. 130, 241–256 (2012).

2011 (7)

B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19(11), 10049–10056 (2011).
[PubMed]

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28(7), 1341–1348 (2011).
[PubMed]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).

2010 (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

T. R. Lin, T. R. S. W. Chang, and S. L. Chuang, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).

J. C. Li, C. L. Wang, and H. Peng, “Vibrational and thermal properties of small diameter silicon nanowires,” J. Appl. Phys. 108(6), 063702 (2010).

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

2009 (5)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17(8), 5925–5932 (2009).
[PubMed]

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[PubMed]

R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, “Spiral-type terahertz antennas and the manifestation of the Mushiake principle,” Opt. Express 17(12), 9971–9980 (2009).
[PubMed]

2008 (1)

J. W. Liaw, “Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission,” IEEE J. Sel. Top. Quant. 14(6), 1441–1447 (2008).

2005 (2)

J. Aizpurua, G. W. Bryant, and L. J. Richter, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).

2002 (1)

A. C. Maggs and V. Rossetto, “Local simulation algorithms for Coulomb interactions,” Phys. Rev. Lett. 88(19), 196402 (2002).
[PubMed]

1998 (1)

C. Fumeaux, W. Herrmann, and F. K. Kneubühl, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).

1994 (1)

I. Wilke, Y. Oppliger, and W. Herrmann, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58(4), 329–341 (1994).

1985 (1)

Abdel-Rahman, M.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification,” Sci. Rep. 4, 4270 (2014).
[PubMed]

Abdulagatov, A. I.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Abeysinghe, D. C.

Adelmann, C.

B. Govoreanu, C. Adelmann, and A. Redolfi, “High-performance metal-insulator-metal tunnel diode selectors,” IEEE Electron Device Lett. 35(1), 63–65 (2014).

Aizpurua, J.

J. Aizpurua, G. W. Bryant, and L. J. Richter, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Alda, J.

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(103), A412–A418 (2013).
[PubMed]

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

Alexander, R. W.

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Ambekar, R.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Amin, Y.

Y. Amin, Q. Chen, and L. R. Zheng, “Design and fabrication of wideband archimedean spiral antenna based ultra-low cost “green” modules for RFID sensing and wireless applications,” Prog. Electromagnetics Res. 130, 241–256 (2012).

Araújo, M. G.

Babicheva, V. E.

S. V. Zhukovsky, V. E. Babicheva, and A. V. Uskov, “Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells,” Plasmonics 9(2), 283–289 (2014).

Bachman, K. A.

Bean, J. A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).

Bell, R. J.

Berry, J. J.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).

Bhaskaran, M.

Bi, P.

Boreman, G.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

Boreman, G. D.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Briones, E.

Briones, J.

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

Bryant, G. W.

J. Aizpurua, G. W. Bryant, and L. J. Richter, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Chang, T. R. S. W.

T. R. Lin, T. R. S. W. Chang, and S. L. Chuang, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).

Chen, Q.

Y. Amin, Q. Chen, and L. R. Zheng, “Design and fabrication of wideband archimedean spiral antenna based ultra-low cost “green” modules for RFID sensing and wireless applications,” Prog. Electromagnetics Res. 130, 241–256 (2012).

Chen, W.

Choi, K.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

Chryssis, A. N.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

Chuang, S. L.

T. R. Lin, T. R. S. W. Chang, and S. L. Chuang, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).

Collins, R. T.

Crozier, K. B.

Cuadrado, A.

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

Dagenais, M.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).

Dhuey, S.

Díaz de León, R.

Fang, N. X.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[PubMed]

Filipovic, D. S.

J. R. Mruk, N. Sutton, and D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antenn. Propag. 62(2), 968–972 (2014).

Flammer, P. D.

Fu, S.

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Fumeaux, C.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21(1), 1344–1352 (2013).
[PubMed]

C. Fumeaux, W. Herrmann, and F. K. Kneubühl, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).

Fung, K. H.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Furtak, T. E.

Gadalla, M. N.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification,” Sci. Rep. 4, 4270 (2014).
[PubMed]

Gallo, M.

M. Gallo, L. Mescia, and O. Losito, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).

George, S. M.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, “Spiral-type terahertz antennas and the manifestation of the Mushiake principle,” Opt. Express 17(12), 9971–9980 (2009).
[PubMed]

Ginley, D. S.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Ginn, J.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

Gonzalez, F. J.

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

González, F. J.

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(103), A412–A418 (2013).
[PubMed]

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).

Govoreanu, B.

B. Govoreanu, C. Adelmann, and A. Redolfi, “High-performance metal-insulator-metal tunnel diode selectors,” IEEE Electron Device Lett. 35(1), 63–65 (2014).

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, and M. Willatzen, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Guo, L.

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

Guthrey, H. L.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Habteyes, T. G.

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[PubMed]

Hartmann, N.

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

Hartschuh, A.

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

He, M.

He, T.

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[PubMed]

Hehn, M.

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Herrmann, W.

C. Fumeaux, W. Herrmann, and F. K. Kneubühl, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).

I. Wilke, Y. Oppliger, and W. Herrmann, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58(4), 329–341 (1994).

Hofmann, M. S.

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

Högele, A.

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

Hollingsworth, R. E.

Hu, H.

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

Janik, J.

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

Jiang, X.

Joshi, S.

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quant. 20(6), 70–78 (2014).

Kang, J. H.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[PubMed]

Kang, X.

Kiesow, K. I.

Kim, D. S.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[PubMed]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[PubMed]

Kneubühl, F. K.

C. Fumeaux, W. Herrmann, and F. K. Kneubühl, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[PubMed]

Ko, K. D.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Kumar, A.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Landesa, L.

Lederer, F.

Li, H.

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Li, H. J.

Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).

Li, J. C.

J. C. Li, C. L. Wang, and H. Peng, “Vibrational and thermal properties of small diameter silicon nanowires,” J. Appl. Phys. 108(6), 063702 (2010).

Liaw, J. W.

J. W. Liaw, “Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission,” IEEE J. Sel. Top. Quant. 14(6), 1441–1447 (2008).

Lin, T. R.

T. R. Lin, T. R. S. W. Chang, and S. L. Chuang, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).

Liu, B.

Liu, G. L.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Liu, Z. M.

Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).

Long, L. L.

Losito, O.

M. Gallo, L. Mescia, and O. Losito, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).

Lu, S.

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

Luo, J.

Maggs, A. C.

A. C. Maggs and V. Rossetto, “Local simulation algorithms for Coulomb interactions,” Phys. Rev. Lett. 88(19), 196402 (2002).
[PubMed]

Martinez-Anton, J. C.

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

Martínez-Antón, J. C.

Mauser, N.

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

McMurtry, S.

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

Menzel, C.

Mescia, L.

M. Gallo, L. Mescia, and O. Losito, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).

Meyrath, T. P.

Mitchell, A.

Moddel, G.

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quant. 20(6), 70–78 (2014).

Montaigne, F.

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

Mruk, J. R.

J. R. Mruk, N. Sutton, and D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antenn. Propag. 62(2), 968–972 (2014).

Ndione, P. F.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Nelson, R. L.

Nenzi, P.

V. Varlamava, F. Palma, and P. Nenzi, “Electric field enhancement in 3-D tapered helix antenna for terahertz applications,” IEEE T. Thz. Sci. Techn. 4(3), 360–367 (2014).

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).

O’Hayre, R. P.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Obelleiro, F.

Oppliger, Y.

I. Wilke, Y. Oppliger, and W. Herrmann, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58(4), 329–341 (1994).

Ordal, M. A.

Palma, F.

V. Varlamava, F. Palma, and P. Nenzi, “Electric field enhancement in 3-D tapered helix antenna for terahertz applications,” IEEE T. Thz. Sci. Techn. 4(3), 360–367 (2014).

Parilla, P. A.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Park, Q. H.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[PubMed]

Peckerar, M. C.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

Peltzer, J. J.

Peng, H.

J. C. Li, C. L. Wang, and H. Peng, “Vibrational and thermal properties of small diameter silicon nanowires,” J. Appl. Phys. 108(6), 063702 (2010).

Periasamy, P.

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Peschel, U.

Pors, A.

D. K. Gramotnev, A. Pors, and M. Willatzen, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).

Protsenko, I. E.

I. E. Protsenko and A. V. Uskov, “Photoemission from metal nanoparticles,” Phys. Uspekhi 55(5), 508 (2012).

Querry, M. R.

Redolfi, A.

B. Govoreanu, C. Adelmann, and A. Redolfi, “High-performance metal-insulator-metal tunnel diode selectors,” IEEE Electron Device Lett. 35(1), 63–65 (2014).

Richter, L. J.

J. Aizpurua, G. W. Bryant, and L. J. Richter, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Rivero, J.

Rockstuhl, C.

Romanov, S.

Rossetto, V.

A. C. Maggs and V. Rossetto, “Local simulation algorithms for Coulomb interactions,” Phys. Rev. Lett. 88(19), 196402 (2002).
[PubMed]

Rui, G.

Sabaawi, A. M.

A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Analysis and modeling of infrared solar rectennas,” IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013).

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[PubMed]

Shah, C. M.

Shamim, A.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification,” Sci. Rep. 4, 4270 (2014).
[PubMed]

Sharif, B. S.

A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Analysis and modeling of infrared solar rectennas,” IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013).

Shi, C.

Simón, J.

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

Singh, R.

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[PubMed]

Sriram, S.

Sutton, N.

J. R. Mruk, N. Sutton, and D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antenn. Propag. 62(2), 968–972 (2014).

Taboada, J. M.

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Tang, Y.

Toussaint, K. C.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

Tsimenidis, C. C.

A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Analysis and modeling of infrared solar rectennas,” IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013).

Uskov, A. V.

S. V. Zhukovsky, V. E. Babicheva, and A. V. Uskov, “Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells,” Plasmonics 9(2), 283–289 (2014).

I. E. Protsenko and A. V. Uskov, “Photoemission from metal nanoparticles,” Phys. Uspekhi 55(5), 508 (2012).

Varlamava, V.

V. Varlamava, F. Palma, and P. Nenzi, “Electric field enhancement in 3-D tapered helix antenna for terahertz applications,” IEEE T. Thz. Sci. Techn. 4(3), 360–367 (2014).

Vold, A.

Wang, C. L.

J. C. Li, C. L. Wang, and H. Peng, “Vibrational and thermal properties of small diameter silicon nanowires,” J. Appl. Phys. 108(6), 063702 (2010).

Wang, D.

Wang, K.

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

Weeks, A.

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).

Wen, J.

Wilke, I.

I. Wilke, Y. Oppliger, and W. Herrmann, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58(4), 329–341 (1994).

Willatzen, M.

D. K. Gramotnev, A. Pors, and M. Willatzen, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).

Withayachumnankul, W.

Wu, J.

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Wu, P.

Xiao, Y.

Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).

Xie, S.

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Xu, H.

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Yang, T.

Ye, X.

Yesilkoy, F.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

Yi, Y.

Yi, Z.

Zhan, Q.

Zhang, W.

Zheng, L. R.

Y. Amin, Q. Chen, and L. R. Zheng, “Design and fabrication of wideband archimedean spiral antenna based ultra-low cost “green” modules for RFID sensing and wireless applications,” Prog. Electromagnetics Res. 130, 241–256 (2012).

Zhou, F. Q.

Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).

Zhou, X.

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Zhu, Z.

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quant. 20(6), 70–78 (2014).

Zhukovsky, S. V.

S. V. Zhukovsky, V. E. Babicheva, and A. V. Uskov, “Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells,” Plasmonics 9(2), 283–289 (2014).

Zou, L.

Adv. Mater. (1)

P. Periasamy, H. L. Guthrey, A. I. Abdulagatov, P. F. Ndione, J. J. Berry, D. S. Ginley, S. M. George, P. A. Parilla, and R. P. O’Hayre, “Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance,” Adv. Mater. 25(9), 1301–1308 (2013).
[PubMed]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Briones, J. Briones, A. Cuadrado, J. C. Martinez-Anton, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. Gonzalez, “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett. 105(9), 093108 (2014).

T. R. Lin, T. R. S. W. Chang, and S. L. Chuang, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).

Appl. Phys., A Mater. Sci. Process. (1)

I. Wilke, Y. Oppliger, and W. Herrmann, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58(4), 329–341 (1994).

Energy (1)

M. Gallo, L. Mescia, and O. Losito, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).

Front. Phys. (1)

K. Wang, H. Hu, S. Lu, L. Guo, and T. He, “Design of a sector bowtie nano-rectenna for optical power and infrared detection,” Front. Phys. 10(5), 1–12 (2015).

IEEE Electron Device Lett. (1)

B. Govoreanu, C. Adelmann, and A. Redolfi, “High-performance metal-insulator-metal tunnel diode selectors,” IEEE Electron Device Lett. 35(1), 63–65 (2014).

IEEE J. Quantum Electron. (1)

J. A. Bean, A. Weeks, and G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).

IEEE J. Sel. Top. Quant. (2)

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quant. 20(6), 70–78 (2014).

J. W. Liaw, “Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission,” IEEE J. Sel. Top. Quant. 14(6), 1441–1447 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, “Analysis and modeling of infrared solar rectennas,” IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013).

IEEE T. Thz. Sci. Techn. (1)

V. Varlamava, F. Palma, and P. Nenzi, “Electric field enhancement in 3-D tapered helix antenna for terahertz applications,” IEEE T. Thz. Sci. Techn. 4(3), 360–367 (2014).

IEEE Trans. Antenn. Propag. (1)

J. R. Mruk, N. Sutton, and D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antenn. Propag. 62(2), 968–972 (2014).

Infrared Phys. Technol. (3)

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).

C. Fumeaux, W. Herrmann, and F. K. Kneubühl, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).

J. Appl. Phys. (1)

J. C. Li, C. L. Wang, and H. Peng, “Vibrational and thermal properties of small diameter silicon nanowires,” J. Appl. Phys. 108(6), 063702 (2010).

J. Nanomater. (1)

Y. Xiao, Z. M. Liu, F. Q. Zhou, and H. J. Li, “Effects of dielectric environment on phase resonance in compound grating,” J. Nanomater. 2015, 179621 (2015).

J. Opt. Soc. Am. A (1)

Mod. Phys. Lett. B (1)

X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical properties and plasmon resonance of coupled gold nanoshell arrays,” Mod. Phys. Lett. B 25(2), 109–118 (2011).

Nano Lett. (2)

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[PubMed]

N. Mauser, N. Hartmann, M. S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, “Antenna-enhanced optoelectronic probing of carbon nanotubes,” Nano Lett. 14(7), 3773–3778 (2014).
[PubMed]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Opt. Express (10)

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21(1), 1344–1352 (2013).
[PubMed]

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17(8), 5925–5932 (2009).
[PubMed]

T. G. Habteyes, S. Dhuey, K. I. Kiesow, and A. Vold, “Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging,” Opt. Express 21(18), 21607–21617 (2013).
[PubMed]

E. Briones, A. Cuadrado, J. Briones, R. Díaz de León, J. C. Martínez-Antón, S. McMurtry, M. Hehn, F. Montaigne, J. Alda, and F. J. González, “Seebeck nanoantennas for the detection and characterization of infrared radiation,” Opt. Express 22(106), A1538–A1546 (2014).
[PubMed]

G. Rui, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna,” Opt. Express 20(17), 19297–19304 (2012).
[PubMed]

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(103), A412–A418 (2013).
[PubMed]

G. Rui, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna,” Opt. Express 20(17), 19297–19304 (2012).
[PubMed]

K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
[PubMed]

R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, “Spiral-type terahertz antennas and the manifestation of the Mushiake principle,” Opt. Express 17(12), 9971–9980 (2009).
[PubMed]

B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19(11), 10049–10056 (2011).
[PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (2)

J. Aizpurua, G. W. Bryant, and L. J. Richter, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

D. K. Gramotnev, A. Pors, and M. Willatzen, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).

Phys. Rev. Lett. (3)

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[PubMed]

A. C. Maggs and V. Rossetto, “Local simulation algorithms for Coulomb interactions,” Phys. Rev. Lett. 88(19), 196402 (2002).
[PubMed]

Phys. Uspekhi (1)

I. E. Protsenko and A. V. Uskov, “Photoemission from metal nanoparticles,” Phys. Uspekhi 55(5), 508 (2012).

Plasmonics (1)

S. V. Zhukovsky, V. E. Babicheva, and A. V. Uskov, “Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells,” Plasmonics 9(2), 283–289 (2014).

Proc. SPIE (1)

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).

Prog. Electromagnetics Res. (1)

Y. Amin, Q. Chen, and L. R. Zheng, “Design and fabrication of wideband archimedean spiral antenna based ultra-low cost “green” modules for RFID sensing and wireless applications,” Prog. Electromagnetics Res. 130, 241–256 (2012).

Sci. Rep. (1)

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification,” Sci. Rep. 4, 4270 (2014).
[PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[PubMed]

Other (1)

U. Saynak, “Novel rectangular spiral antennas,” Izmir Inst. Techn, M.S. Thesis, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Design of the square spiral nano-rectenna. (a) MIM diode band diagram under IR illumination, (b) equivalent circuit of the nano-rectenna, and (c) structure of the nano-rectenna.
Fig. 2
Fig. 2 The electric field and phase distribution of square spiral nano-antenna upon excitation of the incident light. (a) electric field intensity distribution in xy plane when the incident electric field intensity is 1 V/m, (b) zoom-in view of the middle in Fig. 2(a), i.e. the electric field intensity distribution over tunnel junction, (c) electric field phase distribution in xy plane, and (d) electric field vector distribution in xy plane.
Fig. 3
Fig. 3 Nano-rectenna device performance. (a) I-V characteristic curve of the MIM diode, (b) the first derivative (dI/dV), (c) second derivative (d2I/dV2), and (d) sensitivity (I/I) vs. bias voltage for the MIM diode.
Fig. 4
Fig. 4 Theoretical calculation of the local field enhancement factor K vs wavelength at (a) different width of spiral arms, (b) different spacing of spiral arms, and (c) thickness of the spiral antenna; and output current vs wavelength at (d) different arm width, (e) different spacing of spiral arms, and (f) thickness of the spiral antenna.
Fig. 5
Fig. 5 (a) Theoretical calculation of local field enhancement factor vs wavelength at different thickness of the dielectric layer, (b) output peak current vs dielectric layer thickness for the second and third-order resonance, (c) different contact area between metal and semiconductor of the tunnel junction, i.e. 50 × 50, 100 × 100, 150 × 150, 200 × 200 nm2, respectively, (d) local field enhancement factor vs wavelength at different contact area of the tunnel junction, and (e) output peak current vs contact area for the second-order and third-order resonance.
Fig. 6
Fig. 6 Theoretical calculation of local field enhancement factor K vs wavelength (a) at different relative permittivity of TiO x and (d) at different conductivity of TiO x , and peak field intensity vs different relative permittivity (b) at the second-order resonance and (c) at the third-order resonance.
Fig. 7
Fig. 7 Far-field radiation characteristics of the square spiral nano-rectenna at different spiral turns. (a) Simulation model for 1, 1.5, 2 and 2.5 turns, respectively, with respect to Au arm; (b) three-dimensional directivity of the nano-rectenna for the far-field radiation at different spiral turns; (c) two-dimensional directivity of the nano-rectenna for the far-field radiation at different spiral turns, and the internal brown line represents E plane while the outside red line is H plane; (d) and (e) electric field amplitude of far and near-field radiation at different spiral turns, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f c = 1 2 π R C D = R A + R D ( V ) 2 π R A R D ( V ) C D
C D = ε r ε 0 A d
ε ( ω ) = ε 1 ( ω ) + i ε ( ω ) 2 = 1 ω p 2 ω 2 + i ω γ D
ω - ω 0 ω = V [ Δ μ H H + ( Δ ε E ) E ] d V V [ μ H H + ε E E ] d V

Metrics