Abstract

We report for the first time multi-watt mid-infrared supercontinuum (SC) output from a dehydrated tellurite step-index fiber. The tellurite glass preform is melted in a dry-atmosphere filled glovebox and the water impurity in the glass has been reduced to 1ppm level. The fiber has a large core diameter of 12 µm and a numerical aperture (NA) of 0.21. Using the amplified Raman-shifted soliton pulses from a 1.55 µm erbium-doped fiber laser as the pump, a broadband 2-3 µm supercontinuum with a 3dB bandwidth of 985 nm has been generated from an 80cm-long dehydrated tellurite glass fiber. The power spectral density of the SC is above 3.5 dBm/nm in the whole range of 2-3 µm. The net output power of the supercontinuum from the tellurite fiber is measured to be 2.1 W. To the best of our knowledge, this is the highest average power of mid-IR SC generated from a tellurite fiber. The spectral density of above 3 dBm/nm is also one of the highest spectral densities of a SC achieved in 2.5-3 μm range from an oxide glass fiber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Halo-tellurite glass fiber with low OH content for 2-5µm mid-infrared nonlinear applications

Xian Feng, Jindan Shi, Martha Segura, Nicolas M. White, Pradeesh Kannan, Wei H. Loh, Laurent Calvez, Xianghua Zhang, and Laurent Brilland
Opt. Express 21(16) 18949-18954 (2013)

Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers

I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J-C Jules, P-Y Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala
Opt. Express 20(24) 27083-27093 (2012)

Extruded tellurite glass and fibers with low OH content for mid-infrared applications

Heike Ebendorff-Heidepriem, Kevin Kuan, Michael R. Oermann, Kenton Knight, and Tanya M. Monro
Opt. Mater. Express 2(4) 432-442 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  2. T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
    [Crossref] [PubMed]
  3. G. Teikemeier and D. J. Goldberg, “Skin resurfacing with the erbium:YAG laser,” Dermatol. Surg. 23(8), 685–687 (1997).
    [Crossref] [PubMed]
  4. T. L. Roberts, J. T. Lettieri, and L. B. Ellis, “CO2 laser resurfacing: recognizing and minimizing complications pestricted access,” Aesthet. Surg. J. 16(2), 142–148 (1996).
    [Crossref]
  5. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer, 2003).
  6. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  7. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]
  8. J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength,” Appl. Opt. 36(33), 8595–8600 (1997).
    [Crossref] [PubMed]
  9. S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
    [Crossref]
  10. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  11. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  12. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  13. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  14. D. K. Serkland and P. Kumar, “Tunable fiber-optic parametric oscillator,” Opt. Lett. 24(2), 92–94 (1999).
    [Crossref] [PubMed]
  15. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  16. J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).
  17. M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
    [Crossref]
  18. N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–75 (1965).
    [Crossref]
  19. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
    [Crossref]
  20. N. Abdukerim, L. Li, and M. Rochette, “Chalcogenide-based optical parametric oscillator at 2 μm,” Opt. Lett. 41(18), 4364–4367 (2016).
    [Crossref] [PubMed]
  21. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  22. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref] [PubMed]
  23. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
    [Crossref] [PubMed]
  24. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref] [PubMed]
  25. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  26. L. Jeunhomme, H. Poignant, and M. Monerie, “Material dispersion evaluation in a fluoride glass,” Electron. Lett. 17(21), 808–809 (1981).
    [Crossref]
  27. J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
    [Crossref] [PubMed]
  28. V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
    [Crossref]
  29. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  30. G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
    [Crossref]
  31. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
    [Crossref] [PubMed]
  32. J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, “Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 3461–3469 (2011).
    [Crossref]
  33. X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
    [Crossref]
  34. X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2-5µm mid-infrared nonlinear applications,” Opt. Express 21(16), 18949–18954 (2013).
    [Crossref] [PubMed]
  35. M. A. Ettabib, K. Hammani, X.Feng, M. Belal, J. Shi, A. Bogris, A. Kapsalis, D. Syvridis, D. J. Richardson and P. Petropoulos, “Highly Nonlinear Tellurite Glass Fiber for Broadband Applications,” OFC 2014, Tu2K.3.(2014).
    [Crossref]
  36. M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
    [Crossref] [PubMed]
  37. F. X. Gan, Calculation of Physical Properties and Composition Design for Inorganic Glasses (Shanghai Science, 1981).
  38. S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride glass cladded optical fibres for mid-infrared ray transmission,” Electron. Lett. 17(17), 591–592 (1981).
    [Crossref]
  39. N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2–ZnO–BaO glasses,” J. Non-Cryst. Solids 358(5), 947–951 (2012).
    [Crossref]
  40. K. Yin, B. Zhang, J. Yao, L. Yang, G. Liu, and J. Hou, “1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio,” Opt. Lett. 41(21), 5067–5070 (2016).
    [Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (3)

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (4)

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2-5µm mid-infrared nonlinear applications,” Opt. Express 21(16), 18949–18954 (2013).
[Crossref] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

2012 (4)

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2–ZnO–BaO glasses,” J. Non-Cryst. Solids 358(5), 947–951 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2011 (1)

2009 (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

2008 (1)

2006 (1)

2005 (1)

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

2001 (1)

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

2000 (1)

1999 (2)

D. K. Serkland and P. Kumar, “Tunable fiber-optic parametric oscillator,” Opt. Lett. 24(2), 92–94 (1999).
[Crossref] [PubMed]

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

1997 (2)

1996 (1)

T. L. Roberts, J. T. Lettieri, and L. B. Ellis, “CO2 laser resurfacing: recognizing and minimizing complications pestricted access,” Aesthet. Surg. J. 16(2), 142–148 (1996).
[Crossref]

1995 (1)

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

1994 (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1981 (2)

L. Jeunhomme, H. Poignant, and M. Monerie, “Material dispersion evaluation in a fluoride glass,” Electron. Lett. 17(21), 808–809 (1981).
[Crossref]

S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride glass cladded optical fibres for mid-infrared ray transmission,” Electron. Lett. 17(17), 591–592 (1981).
[Crossref]

1975 (1)

M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
[Crossref]

1965 (1)

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–75 (1965).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdukerim, N.

Alam, S.

Alam, S. U.

Amraoui, M. E.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Baskiotis, C.

Belal, M.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernier, M.

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Boniort, J. Y.

J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).

Brehm, C.

J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).

Brilland, L.

Brun, P.

M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
[Crossref]

Calvez, L.

Camerlingo, A.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Carbonnier, C.

Caron, N.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Carrée, J. Y.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Chen, K.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Dasgupta, S.

Denstedt, J. D.

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

DuPont, P. H.

J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ellis, L. B.

T. L. Roberts, J. T. Lettieri, and L. B. Ellis, “CO2 laser resurfacing: recognizing and minimizing complications pestricted access,” Aesthet. Surg. J. 16(2), 142–148 (1996).
[Crossref]

Ettabib, M.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Faucher, D.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Feehan, J. S.

Feng, X.

M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
[Crossref] [PubMed]

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2-5µm mid-infrared nonlinear applications,” Opt. Express 21(16), 18949–18954 (2013).
[Crossref] [PubMed]

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S. Alam, W. H. Loh, D. J. Richardson, and M. Ibsen, “1.06 µm Picosecond Pulsed, “Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient,” J. Lightwave Technol. 29(22), 3461–3469 (2011).
[Crossref]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
[Crossref] [PubMed]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

Flanagan, J. C.

Fortin, V.

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Frampton, K. E.

Freeman, M. J.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gauthier, J. C.

Ghosh, G.

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Goldberg, D. J.

G. Teikemeier and D. J. Goldberg, “Skin resurfacing with the erbium:YAG laser,” Dermatol. Surg. 23(8), 685–687 (1997).
[Crossref] [PubMed]

Grasso, M.

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

Guignot, D.

J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Heidt, A. M.

Hewak, D. W.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Horak, P.

Hou, J.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Ibsen, M.

Islam, M. N.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jeunhomme, L.

L. Jeunhomme, H. Poignant, and M. Monerie, “Material dispersion evaluation in a fluoride glass,” Electron. Lett. 17(21), 808–809 (1981).
[Crossref]

Kanamori, T.

S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride glass cladded optical fibres for mid-infrared ray transmission,” Electron. Lett. 17(17), 591–592 (1981).
[Crossref]

Kannan, P.

Kapany, N. S.

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–75 (1965).
[Crossref]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Kumar, P.

Le Sergent, C.

J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).

Lettieri, J. T.

T. L. Roberts, J. T. Lettieri, and L. B. Ellis, “CO2 laser resurfacing: recognizing and minimizing complications pestricted access,” Aesthet. Surg. J. 16(2), 142–148 (1996).
[Crossref]

Li, J.

Li, L.

Li, Z.

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Liu, G.

Liu, J.

Liu, K.

Liu, Y.

Loh, W. H.

Lucas, J.

M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
[Crossref]

Luo, H.

Mairaj, A. K.

Manikandan, N.

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2–ZnO–BaO glasses,” J. Non-Cryst. Solids 358(5), 947–951 (2012).
[Crossref]

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Mazé, G.

Messaddeq, Y.

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Mirov, M.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Mitachi, S.

S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride glass cladded optical fibres for mid-infrared ray transmission,” Electron. Lett. 17(17), 591–592 (1981).
[Crossref]

Miyashita, T.

S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride glass cladded optical fibres for mid-infrared ray transmission,” Electron. Lett. 17(17), 591–592 (1981).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Monerie, M.

L. Jeunhomme, H. Poignant, and M. Monerie, “Material dispersion evaluation in a fluoride glass,” Electron. Lett. 17(21), 808–809 (1981).
[Crossref]

Monro, T. M.

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petropoulos, P.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poignant, H.

L. Jeunhomme, H. Poignant, and M. Monerie, “Material dispersion evaluation in a fluoride glass,” Electron. Lett. 17(21), 808–809 (1981).
[Crossref]

Poulain, M.

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref] [PubMed]

M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
[Crossref]

M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
[Crossref]

Poulain, S.

Price, J. H. V.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ranka, J. K.

Razvi, H. A.

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

Richardson, D. J.

Roberts, T. L.

T. L. Roberts, J. T. Lettieri, and L. B. Ellis, “CO2 laser resurfacing: recognizing and minimizing complications pestricted access,” Aesthet. Surg. J. 16(2), 142–148 (1996).
[Crossref]

Rochette, M.

Rogenes, V. J.

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Rutt, H. N.

Ryasnyanskiy, A.

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2–ZnO–BaO glasses,” J. Non-Cryst. Solids 358(5), 947–951 (2012).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schneider, J.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Segura, M.

Serkland, D. K.

Shen, L.

Shi, H.

Shi, J.

Simms, R. J.

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–75 (1965).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Stentz, A. J.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, Z.

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Tan, F.

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Teh, P. S.

Teichman, J. M. H.

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

Teikemeier, G.

G. Teikemeier and D. J. Goldberg, “Skin resurfacing with the erbium:YAG laser,” Dermatol. Surg. 23(8), 685–687 (1997).
[Crossref] [PubMed]

Terry, F. L.

Toulouse, J.

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2–ZnO–BaO glasses,” J. Non-Cryst. Solids 358(5), 947–951 (2012).
[Crossref]

Unrau, U. B.

Vallée, R.

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, P.

White, N. M.

Windeler, R. S.

Wollin, T. A.

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

Xia, C.

Xu, L.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Yan, Z.

Yang, L.

Yao, J.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Yin, K.

Zhang, B.

Zhang, L.

Zhang, X.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, K.

Aesthet. Surg. J. (1)

T. L. Roberts, J. T. Lettieri, and L. B. Ellis, “CO2 laser resurfacing: recognizing and minimizing complications pestricted access,” Aesthet. Surg. J. 16(2), 142–148 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Dermatol. Surg. (1)

G. Teikemeier and D. J. Goldberg, “Skin resurfacing with the erbium:YAG laser,” Dermatol. Surg. 23(8), 685–687 (1997).
[Crossref] [PubMed]

Electron. Lett. (2)

L. Jeunhomme, H. Poignant, and M. Monerie, “Material dispersion evaluation in a fluoride glass,” Electron. Lett. 17(21), 808–809 (1981).
[Crossref]

S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride glass cladded optical fibres for mid-infrared ray transmission,” Electron. Lett. 17(17), 591–592 (1981).
[Crossref]

Infrared Phys. (1)

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–75 (1965).
[Crossref]

J. Am. Ceram. Soc. (1)

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

J. Lightwave Technol. (2)

J. Lumin. (1)

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

J. Non-Cryst. Solids (2)

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2–ZnO–BaO glasses,” J. Non-Cryst. Solids 358(5), 947–951 (2012).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1-3), 48–54 (2001).
[Crossref]

J. Urol. (1)

T. A. Wollin, J. M. H. Teichman, V. J. Rogenes, H. A. Razvi, J. D. Denstedt, and M. Grasso, “Holmium:YAG lithotripsy in children,” J. Urol. 162(5), 1717–1720 (1999).
[Crossref] [PubMed]

Mater. Res. Bull. (1)

M. Poulain, M. Poulain, J. Lucas, and P. Brun, “Verres fluores au tetrafluorure de zirconium proprieties optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10(4), 243–246 (1975).
[Crossref]

Nat. Photonics (4)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Eng. (1)

V. Fortin, M. Bernier, N. Caron, D. Faucher, M. E. Amraoui, Y. Messaddeq, and R. Vallée, “Towards the development of fiber lasers for the 2 to 4 μm spectral region,” Opt. Eng. 52(5), 1–7 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

D. K. Serkland and P. Kumar, “Tunable fiber-optic parametric oscillator,” Opt. Lett. 24(2), 92–94 (1999).
[Crossref] [PubMed]

M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
[Crossref] [PubMed]

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

N. Abdukerim, L. Li, and M. Rochette, “Chalcogenide-based optical parametric oscillator at 2 μm,” Opt. Lett. 41(18), 4364–4367 (2016).
[Crossref] [PubMed]

K. Yin, B. Zhang, J. Yao, L. Yang, G. Liu, and J. Hou, “1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio,” Opt. Lett. 41(21), 5067–5070 (2016).
[Crossref] [PubMed]

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Science (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Other (4)

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer, 2003).

J. Y. Boniort, C. Brehm, P. H. DuPont, D. Guignot, and C. Le Sergent, “Infrared glass optical fibers for 4 and 10 micron bands,” Proc. 6th ECOC York (IEE, 1980) 61–64 (1980).

M. A. Ettabib, K. Hammani, X.Feng, M. Belal, J. Shi, A. Bogris, A. Kapsalis, D. Syvridis, D. J. Richardson and P. Petropoulos, “Highly Nonlinear Tellurite Glass Fiber for Broadband Applications,” OFC 2014, Tu2K.3.(2014).
[Crossref]

F. X. Gan, Calculation of Physical Properties and Composition Design for Inorganic Glasses (Shanghai Science, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Water-induced absorption of dehydrated tellurite glasses.
Fig. 2
Fig. 2 Measured DTA curve of 70TeO2-20ZnO-10BaO (mol.%).
Fig. 3
Fig. 3 Schematic of making core/cladding preform by modified built-in casting method. (a) Casting cladding glass into preheated mould; (b) topping core glass melt onto the cladding glass; (c) core glass melt filling into center of the cladding glass in the preform.
Fig. 4
Fig. 4 Optical photograph of cross-section of fabricated tellurite fiber.
Fig. 5
Fig. 5 Material dispersion curve of fabricated fiber based on 70TeO2-20ZnO-10BaO (mol.%). Inset: detailed curves of material dispersion and total dispersion of fabricated fiber near 2.2 µm.
Fig. 6
Fig. 6 Relative reduced Raman intensities of studied tellurite glasses and referenced silica.
Fig. 7
Fig. 7 Experimental setup for generating mid-IR SC from dehydrated tellurite fiber.
Fig. 8
Fig. 8 (a) far-field pattern observed from output end of tellurite fiber with TDFA output of 10mW. (b) Spectral traces from TDFA output and corresponding SC generated from 0.8-m tellurite fiber at different pump power of 5.2 W, 7.1 W, 9.8 W. The pink arrow indicates the position of the zero dispersion wavelength (ZDW) of the fabricated tellurite fiber.

Metrics