Abstract

Photo-thermo-refractive glass (PTR glass) is a multicomponent silicate glass doped with Ce3+, which changes its refractive index after exposure to UV radiation followed by thermal development. It is extensively used for recording of trivial holograms (volume Bragg gratings) operating in the visible and near IR spectral regions. Ability to record complex holographic structures in PTR glass is of utmost interest as it would be advantageous for imaging and laser beam control applications. However, since photosensitivity of PTR glass is limited to the UV region, complex holograms for the visible and IR applications could not be recorded in PTR glass. To extend PTR glass sensitivity towards longer wavelengths the same glass matrix was doped with terbium, and then an excited state absorption mechanism was used for two-step excitation of the 5d14f7 band of Tb3+ ions by concurrent illumination by long wavelengths (449, 522, 808 or 975 nm) and UV (375 nm) photons. For the first time refractive index modulation exceeding 2 × 10−4 was observed after exposing the material to blue, green and near IR laser radiation. Complex holograms operating in the blue and green spectral regions were recorded in Tb-doped PTR-glass.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chloride photo-thermo-refractive glasses

Victor D. Dubrovin, Alexander I. Ignatiev, and Nikolay V. Nikonorov
Opt. Mater. Express 6(5) 1701-1713 (2016)

Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording

Victor Dubrovin, Nikolay Nikonorov, and Alexander Ignatiev
Opt. Mater. Express 7(7) 2280-2292 (2017)

Gradient of refractive index (GRIN) effect in photo-thermo-refractive glass

Julien Lumeau and Leonid B. Glebov
Appl. Opt. 54(7) 1587-1593 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Glebov, “Photochromic and photo-thermo-refractive (PTR) glasses,” in Encyclopedia of Smart Materials (John Wiley & Sons, 2002).
  2. L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).
  3. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
    [Crossref]
  4. A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
    [Crossref]
  5. L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41, 684–690 (2013).
  6. L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
    [Crossref]
  7. M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).
  8. P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
    [Crossref]
  9. C. W. Thiel, Y. Sun, and R. L. Cone, “Progress in Relating Rare Earth Ion 4f and 5d Energy Levelsto Host Bands in Optical Materials for Hole Burning, Quantum Information, and Phosphors,” J. Mod. Opt. 49, 2399 (2002).
    [Crossref]
  10. M. D. Chambers and D. R. Clarke, “Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry,” Annu. Rev. Mater. Res. 39(1), 325–359 (2009).
    [Crossref]
  11. A. Hoaksey, J. Wood, and K. Taylor, “Luminescence of Tb3+-ions in silicate glasses,” J. Lumin. 17(4), 385–400 (1978).
    [Crossref]
  12. J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).
  13. A. D. Sontakke, K. Biswas, and K. Annapurna, “Concentration-dependent luminescence of Tb3+ ions in high calcium alumino silicate glasses,” J. Lumin. 129(11), 1347–1355 (2009).
    [Crossref]
  14. H. Ebendorf-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valences in glasses,” Opt. Mater. 15(1), 7–25 (2000).
    [Crossref]
  15. E. Nakazawa, “The lowest 4f-to-5d transition and charge transfer transitions of rare earth ions in YPO4 hosts,” J. Lumin. 100(1-4), 89–96 (2002).
    [Crossref]
  16. L. Glebov, L. Glebova, E. Rotari, A. Gusarov, and F. Berghmans, “Radiation-induced absorption in a photo-thermo-refractive glass,” Proc. SPIE 5897, 58970J (2005).
    [Crossref]
  17. W. F. Van Der Weg, Th. J. A. Popma, and A. T. Vink, “Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12,” J. Appl. Phys. 57(12), 5450–5456 (1985).
    [Crossref]
  18. H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
    [Crossref]
  19. R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M - Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
    [Crossref]
  20. Q. Liu, B. F. Johnston, S. Gross, M. J. Withford, and M. J. Steel, “A parametric study of laser induced-effects in terbium-dope borosilicate glasses: prospects for compact magneto-optic devices,” Opt. Mater. Express 3(12), 2096 (2013).
    [Crossref]
  21. O. M. Efimov, L. B. Glebov, and H. P. Andre, “Measurement of the induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41(10), 1864–1871 (2002).
    [Crossref] [PubMed]
  22. B. Y. Zeldovich, A. V. Mamaev, and V. V. Shkunov, “Speckle-wave interaction in application to holography and nonlinier optics,” CRC Press (1994).
  23. V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

2015 (1)

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

2014 (1)

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

2013 (2)

2012 (1)

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

2010 (1)

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M - Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

2009 (3)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

M. D. Chambers and D. R. Clarke, “Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry,” Annu. Rev. Mater. Res. 39(1), 325–359 (2009).
[Crossref]

A. D. Sontakke, K. Biswas, and K. Annapurna, “Concentration-dependent luminescence of Tb3+ ions in high calcium alumino silicate glasses,” J. Lumin. 129(11), 1347–1355 (2009).
[Crossref]

2008 (1)

L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).

2007 (1)

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

2002 (3)

E. Nakazawa, “The lowest 4f-to-5d transition and charge transfer transitions of rare earth ions in YPO4 hosts,” J. Lumin. 100(1-4), 89–96 (2002).
[Crossref]

C. W. Thiel, Y. Sun, and R. L. Cone, “Progress in Relating Rare Earth Ion 4f and 5d Energy Levelsto Host Bands in Optical Materials for Hole Burning, Quantum Information, and Phosphors,” J. Mod. Opt. 49, 2399 (2002).
[Crossref]

O. M. Efimov, L. B. Glebov, and H. P. Andre, “Measurement of the induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41(10), 1864–1871 (2002).
[Crossref] [PubMed]

2000 (2)

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[Crossref]

H. Ebendorf-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valences in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

1998 (1)

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

1989 (1)

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

1985 (1)

W. F. Van Der Weg, Th. J. A. Popma, and A. T. Vink, “Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12,” J. Appl. Phys. 57(12), 5450–5456 (1985).
[Crossref]

1978 (1)

A. Hoaksey, J. Wood, and K. Taylor, “Luminescence of Tb3+-ions in silicate glasses,” J. Lumin. 17(4), 385–400 (1978).
[Crossref]

Andre, H. P.

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Annapurna, K.

A. D. Sontakke, K. Biswas, and K. Annapurna, “Concentration-dependent luminescence of Tb3+ ions in high calcium alumino silicate glasses,” J. Lumin. 129(11), 1347–1355 (2009).
[Crossref]

Biswas, K.

A. D. Sontakke, K. Biswas, and K. Annapurna, “Concentration-dependent luminescence of Tb3+ ions in high calcium alumino silicate glasses,” J. Lumin. 129(11), 1347–1355 (2009).
[Crossref]

Borgman, V. A.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Chambers, M. D.

M. D. Chambers and D. R. Clarke, “Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry,” Annu. Rev. Mater. Res. 39(1), 325–359 (2009).
[Crossref]

Clarke, D. R.

M. D. Chambers and D. R. Clarke, “Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry,” Annu. Rev. Mater. Res. 39(1), 325–359 (2009).
[Crossref]

Cohanoschi, I.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

Cone, R. L.

C. W. Thiel, Y. Sun, and R. L. Cone, “Progress in Relating Rare Earth Ion 4f and 5d Energy Levelsto Host Bands in Optical Materials for Hole Burning, Quantum Information, and Phosphors,” J. Mod. Opt. 49, 2399 (2002).
[Crossref]

Divliansky, I.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

Dorenbos, P.

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[Crossref]

Ebendorf-Heidepriem, H.

H. Ebendorf-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valences in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

Efimov, O. M.

Ehrt, D.

H. Ebendorf-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valences in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

Glebov, A.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

Glebov, A. L.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

Glebov, L.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41, 684–690 (2013).

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Glebov, L. B.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

O. M. Efimov, L. B. Glebov, and H. P. Andre, “Measurement of the induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41(10), 1864–1871 (2002).
[Crossref] [PubMed]

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Glebova, L.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

Gross, S.

Hoaksey, A.

A. Hoaksey, J. Wood, and K. Taylor, “Luminescence of Tb3+-ions in silicate glasses,” J. Lumin. 17(4), 385–400 (1978).
[Crossref]

Hosono, H.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Johnston, B. F.

Jollivet, C.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

Kawazoe, H.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Kinoshita, T.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Kumar, K.

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M - Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Lantigua, C.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

Liu, Q.

Lumeau, J.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

Mokhun, O.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

Nakazawa, E.

E. Nakazawa, “The lowest 4f-to-5d transition and charge transfer transitions of rare earth ions in YPO4 hosts,” J. Lumin. 100(1-4), 89–96 (2002).
[Crossref]

Nikonorov, N. V.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Petrovskii, G. T.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Popma, Th. J. A.

W. F. Van Der Weg, Th. J. A. Popma, and A. T. Vink, “Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12,” J. Appl. Phys. 57(12), 5450–5456 (1985).
[Crossref]

Rai, S. B.

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M - Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Rapaport, A.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Rotari, E.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

Savvin, V. V.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Sawanobori, N.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Schülzgen, A.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

SeGall, M.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

Sinitskii, A.

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

Smirnov, V.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Smolski, O.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

Sontakke, A. D.

A. D. Sontakke, K. Biswas, and K. Annapurna, “Concentration-dependent luminescence of Tb3+ ions in high calcium alumino silicate glasses,” J. Lumin. 129(11), 1347–1355 (2009).
[Crossref]

Steel, M. J.

Sun, Y.

C. W. Thiel, Y. Sun, and R. L. Cone, “Progress in Relating Rare Earth Ion 4f and 5d Energy Levelsto Host Bands in Optical Materials for Hole Burning, Quantum Information, and Phosphors,” J. Mod. Opt. 49, 2399 (2002).
[Crossref]

Taylor, K.

A. Hoaksey, J. Wood, and K. Taylor, “Luminescence of Tb3+-ions in silicate glasses,” J. Lumin. 17(4), 385–400 (1978).
[Crossref]

Thiel, C. W.

C. W. Thiel, Y. Sun, and R. L. Cone, “Progress in Relating Rare Earth Ion 4f and 5d Energy Levelsto Host Bands in Optical Materials for Hole Burning, Quantum Information, and Phosphors,” J. Mod. Opt. 49, 2399 (2002).
[Crossref]

Tsvetkov, A. D.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Van Der Weg, W. F.

W. F. Van Der Weg, Th. J. A. Popma, and A. T. Vink, “Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12,” J. Appl. Phys. 57(12), 5450–5456 (1985).
[Crossref]

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Vergnole, S.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

Verma, R. K.

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M - Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Vink, A. T.

W. F. Van Der Weg, Th. J. A. Popma, and A. T. Vink, “Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12,” J. Appl. Phys. 57(12), 5450–5456 (1985).
[Crossref]

Withford, M. J.

Wood, J.

A. Hoaksey, J. Wood, and K. Taylor, “Luminescence of Tb3+-ions in silicate glasses,” J. Lumin. 17(4), 385–400 (1978).
[Crossref]

Yamamoto, Y.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Yamazaki, M.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Zanotto, E. D.

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

Annu. Rev. Mater. Res. (1)

M. D. Chambers and D. R. Clarke, “Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry,” Annu. Rev. Mater. Res. 39(1), 325–359 (2009).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

J. Appl. Phys. (1)

W. F. Van Der Weg, Th. J. A. Popma, and A. T. Vink, “Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12,” J. Appl. Phys. 57(12), 5450–5456 (1985).
[Crossref]

J. Holography Speckle (1)

L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).

J. Lumin. (4)

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[Crossref]

E. Nakazawa, “The lowest 4f-to-5d transition and charge transfer transitions of rare earth ions in YPO4 hosts,” J. Lumin. 100(1-4), 89–96 (2002).
[Crossref]

A. Hoaksey, J. Wood, and K. Taylor, “Luminescence of Tb3+-ions in silicate glasses,” J. Lumin. 17(4), 385–400 (1978).
[Crossref]

A. D. Sontakke, K. Biswas, and K. Annapurna, “Concentration-dependent luminescence of Tb3+ ions in high calcium alumino silicate glasses,” J. Lumin. 129(11), 1347–1355 (2009).
[Crossref]

J. Mod. Opt. (1)

C. W. Thiel, Y. Sun, and R. L. Cone, “Progress in Relating Rare Earth Ion 4f and 5d Energy Levelsto Host Bands in Optical Materials for Hole Burning, Quantum Information, and Phosphors,” J. Mod. Opt. 49, 2399 (2002).
[Crossref]

J. Phys. Condens. Matter (1)

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys. Condens. Matter 10(42), 9541–9547 (1998).
[Crossref]

Opt. Eng. (2)

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, and A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 1–8 (2014).
[Crossref]

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54, 1–8 (2015).

Opt. Mater. (1)

H. Ebendorf-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valences in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B (1)

J. Lumeau, A. Sinitskii, L. Glebova, L. B. Glebov, and E. D. Zanotto, “Spontaneous and photo-induced crystallization of photo-thermo-refractive glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 281–284 (2007).

Proc. SPIE (1)

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, “Volume Bragg gratings as ultra-narrow and multiband optical filters,” Proc. SPIE 8428, 1–11 (2012).
[Crossref]

Rev. Laser Eng. (1)

L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41, 684–690 (2013).

Solid State Sci. (1)

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M - Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Sov. Phys. Dokl. (1)

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, and A. D. Tsvetkov, “Photothermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34(11), 1011–1013 (1989).

Other (3)

B. Y. Zeldovich, A. V. Mamaev, and V. V. Shkunov, “Speckle-wave interaction in application to holography and nonlinier optics,” CRC Press (1994).

L. Glebov, L. Glebova, E. Rotari, A. Gusarov, and F. Berghmans, “Radiation-induced absorption in a photo-thermo-refractive glass,” Proc. SPIE 5897, 58970J (2005).
[Crossref]

L. B. Glebov, “Photochromic and photo-thermo-refractive (PTR) glasses,” in Encyclopedia of Smart Materials (John Wiley & Sons, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Energy diagram for Tb3 + ions in silicate glass and excited state absorption scheme for different doping concentrations: 0.08 at% Tb3 + (A) and 0.7 at.% Tb3 + (B).
Fig. 2
Fig. 2 UV (A) and IR (B) absorption spectra of PTR glass doped with 0.7 at.%Tb3+.
Fig. 3
Fig. 3 Absorption spectrum (logarithmic scale) of PTR glass matrix doped with 0.27 at.%Tb3 + . Arrows correspond to positions in the absorption spectrum for excitation from 5D4 level with wavelengths of 522 nm (1), 449 nm (2) and 375 nm (3).
Fig. 4
Fig. 4 Green and blue luminescence intensity dependence on Tb3 + concentration [13].
Fig. 5
Fig. 5 Spectrum of luminescence excitation in PTR glass matrix doped with 0.27 at.%Tb3 + . Arrows correspond to positions in the luminescence excitation spectrum for excitation from 5D4 level with wavelengths of 522 nm (1), 449 nm (2) and 375 nm (3).
Fig. 6
Fig. 6 Spectrum of additional absorption in Tb-doped PTR glass after exposure to 375 nm radiation at power density of 0.84 W/cm2 for 15 kJ/cm2 exposing dosage.
Fig. 7
Fig. 7 Diffraction on a metal grid (A) and reference-free complex hologram of “difraction on a metal grid” (B).

Metrics