Abstract

Heavily doped Cu2-xS nanoparticles with hole densities of ~1021 cm−3 were chemically synthesized and their localized surface plasmon resonance (LSPR) in the near-infrared region was investigated by nonlinear optical spectroscopy. We found that their third-order susceptibility χ(3) exhibits resonant enhancement around LSPR, similar to that in plasmonic noble metal nanoparticles. It was found that the maximum χ(3) value of Cu2-xS nanoparticles was comparable to that of Au nanoparticles with the same dimensions and concentrations. Our results indicate that Cu2-xS nanoparticles can be used as nonlinear optical materials operating in the near-infrared region, even though their near-field enhancement effect is slightly weaker than that of Au nanoparticles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Preparation and third-order optical nonlinearity of gold nanoparticles incorporated mesoporous TiO2 thin films

Fangming Cui, Zile Hua, Qianjun He, Jiangtian Li, Limin Guo, Xiangzhi Cui, Peng Jiang, Chenyang Wei, Weimin Huang, Wenbo Bu, and Jianlin Shi
J. Opt. Soc. Am. B 26(1) 107-112 (2009)

Experimental dispersion of the third order optical susceptibility of Ag nanoparticles

Rodrigo Sato, Hiroyoshi Momida, Masato Ohnuma, Masato Sasase, Takahisa Ohno, Naoki Kishimoto, and Yoshihiko Takeda
J. Opt. Soc. Am. B 29(9) 2410-2413 (2012)

Third-order optical nonlinearity of gold nanoparticle arrays embedded in a BaTiO3 matrix

Tingyin Ning, Chunchong Chen, Yueliang Zhou, Heng Lu, Hong Shen, Dongxiang Zhang, Pei Wang, Hai Ming, and Guozhen Yang
Appl. Opt. 48(2) 375-379 (2009)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. M. Pelton and G. W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).
  4. A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
    [Crossref] [PubMed]
  5. J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
    [Crossref] [PubMed]
  6. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
    [Crossref] [PubMed]
  7. D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
    [Crossref] [PubMed]
  8. I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
    [Crossref] [PubMed]
  9. X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
    [Crossref]
  10. Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
    [Crossref] [PubMed]
  11. A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
    [Crossref] [PubMed]
  12. R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
    [Crossref] [PubMed]
  13. M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
    [Crossref] [PubMed]
  14. K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134(9), 3995–3998 (2012).
    [Crossref] [PubMed]
  15. H. Nishi, K. Asami, and T. Tatsuma, “CuS nanoplates for LSPR sensing in the second biological optical window,” Opt. Mater. Express 6(4), 1043–1048 (2016).
    [Crossref]
  16. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
  17. Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
    [Crossref]
  18. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
    [Crossref]
  19. F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
    [Crossref] [PubMed]
  20. I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
    [Crossref] [PubMed]
  21. S. A. Zolotovskaya, V. G. Savitski, P. V. Prokoshin, K. V. Yumashev, V. S. Gurin, and A. A. Alexeenko, “Nonlinear optical properties and Q-switch performance of silica glasses doped with CuxSe nanoparticles,” J. Opt. Soc. Am. B 23(7), 1268–1275 (2006).
    [Crossref]
  22. B. Palpant, “Third-order nonlinear optical response of metal nanoparticles” in Non-Linear Optical Properties of Matter, M. G. Papadopoulos, A. I. Sadlej, and J. Leszczynski, eds. (Springer, 2006).
  23. W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
    [Crossref] [PubMed]
  24. T. Kuzuya, K. Itoh, and K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes,” J. Colloid Interface Sci. 319(2), 565–571 (2008).
    [Crossref] [PubMed]
  25. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  26. O. Madelung, Semiconductor Data Handbook (Springer, 2004).
  27. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2010).
  28. P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
    [Crossref]
  29. B. J. Mulder, “Optical properties of crystals of cuprous sulphides (calcosite, djeurleite, Cu1.9S, and digenite),” Phys. Status Solidi 13(1), 79–88 (1972).
    [Crossref]

2016 (2)

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

H. Nishi, K. Asami, and T. Tatsuma, “CuS nanoplates for LSPR sensing in the second biological optical window,” Opt. Mater. Express 6(4), 1043–1048 (2016).
[Crossref]

2014 (2)

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref] [PubMed]

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref] [PubMed]

2013 (4)

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

2012 (3)

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134(9), 3995–3998 (2012).
[Crossref] [PubMed]

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

2011 (4)

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

2009 (1)

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

2008 (1)

T. Kuzuya, K. Itoh, and K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes,” J. Colloid Interface Sci. 319(2), 565–571 (2008).
[Crossref] [PubMed]

2007 (1)

P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
[Crossref]

2006 (1)

2001 (1)

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

1994 (1)

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).

1972 (1)

B. J. Mulder, “Optical properties of crystals of cuprous sulphides (calcosite, djeurleite, Cu1.9S, and digenite),” Phys. Status Solidi 13(1), 79–88 (1972).
[Crossref]

Alexeenko, A. A.

Alivisatos, A. P.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134(9), 3995–3998 (2012).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Aloni, S.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

Alvarez-Puebla, R. A.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Arbiol, J.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Asahara, Y.

Asami, K.

Banin, U.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

Bao, Q.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Bekenstein, Y.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

Bigall, N. C.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Buonsanti, R.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

Burda, C.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

Cabot, A.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Cadavid, D.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Cartwright, A. N.

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Comin, A.

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref] [PubMed]

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Conforti, M.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

da Como, E.

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Della Valle, G.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Dorfs, D.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Dubavik, A.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Eguchi, M.

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Eychmüller, A.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Falqui, A.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Faucheaux, J. A.

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref] [PubMed]

Feldmann, J.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).

Furube, A.

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

Genovese, A.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Govorov, A. O.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Gurin, V. S.

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).

Hamanaka, Y.

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

Härtling, T.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Hata, C.

Helms, B. A.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

Ibáñez, M.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Ikushima, A. J.

Itoh, K.

T. Kuzuya, K. Itoh, and K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes,” J. Colloid Interface Sci. 319(2), 565–571 (2008).
[Crossref] [PubMed]

Jain, P. K.

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref] [PubMed]

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Jiang, C.

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Kanehara, M.

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

Kaneko, S.

Kim, M. R.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Korobchevskaya, K.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Kotani, T.

P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
[Crossref]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).

Kriegel, I.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Kuwabata, J.

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

Kuzuya, T.

T. Kuzuya, K. Itoh, and K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes,” J. Colloid Interface Sci. 319(2), 565–571 (2008).
[Crossref] [PubMed]

Lambrecht, W. R. L.

P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
[Crossref]

Lanzani, G.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Law, W.-C.

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Lee, S.-T.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Li, W.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Liu, X.

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Liu, Z.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Llordes, A.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

Lou, Y.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

Lu, K.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Lukashev, P.

P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Ma, W.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Manna, L.

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref] [PubMed]

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Manthiram, K.

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134(9), 3995–3998 (2012).
[Crossref] [PubMed]

Milliron, D. J.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

Millo, O.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

Miszta, K.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Mu, H.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Mulder, B. J.

B. J. Mulder, “Optical properties of crystals of cuprous sulphides (calcosite, djeurleite, Cu1.9S, and digenite),” Phys. Status Solidi 13(1), 79–88 (1972).
[Crossref]

Nakamura, A.

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[Crossref]

Nishi, H.

Omi, S.

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[Crossref]

Pan, H.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

Parak, W. J.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Pelaz, B.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Polking, M. J.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

Povia, M.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

Prokoshin, P. V.

Qiu, X.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

Ramesh, R.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).

Rivera Gil, P.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Rodríguez-Fernández, J.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Savitski, V. G.

Schaller, R. D.

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Scotognella, F.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Shavel, A.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Srimath Kandada, A. R.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Stanton, A. L. D.

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref] [PubMed]

Sumiyama, K.

T. Kuzuya, K. Itoh, and K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes,” J. Colloid Interface Sci. 319(2), 565–571 (2008).
[Crossref] [PubMed]

Swihart, M. T.

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Talapin, D. V.

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

Tanahashi, I.

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

Tanji, H.

Tassone, F.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Tatsuma, T.

Teranishi, T.

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

Tokizaki, T.

Uchida, K.

van Schilfgaarde, M.

P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
[Crossref]

Wang, R.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Wang, W.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Wang, X.

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Wang, Y.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Wang, Z.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Waurisch, C.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Wisnet, A.

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Xiao, S.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Yoshinaga, T.

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

Yumashev, K. V.

Zamani, R.

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

Zavelani-Rossi, M.

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Zhang, H.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

Zhou, B.

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Zhu, J.

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

Zhu, X.

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Zolotovskaya, S. A.

ACS Nano (1)

I. Kriegel, J. Rodríguez-Fernández, A. Wisnet, H. Zhang, C. Waurisch, A. Eychmüller, A. Dubavik, A. O. Govorov, and J. Feldmann, “Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances,” ACS Nano 7(5), 4367–4377 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Liu, X. Wang, B. Zhou, W.-C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Adv. Mater. (1)

Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S.-T. Lee, Q. Bao, and W. Ma, “Pulsed laser employing solution-processed plasmonic Cu3-xP colloidal nanocrystals,” Adv. Mater. 28(18), 3535–3542 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, and T. Teranishi, “Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film,” Angew. Chem. Int. Ed. Engl. 51(11), 2640–2642 (2012).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).

Chem. Soc. Rev. (1)

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (5)

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, “Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref] [PubMed]

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals,” J. Am. Chem. Soc. 133(29), 11175–11180 (2011).
[Crossref] [PubMed]

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134(9), 3995–3998 (2012).
[Crossref] [PubMed]

W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, “CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents,” J. Am. Chem. Soc. 135(19), 7098–7101 (2013).
[Crossref] [PubMed]

I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

T. Kuzuya, K. Itoh, and K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes,” J. Colloid Interface Sci. 319(2), 565–571 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Lett. (1)

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref] [PubMed]

Nano Lett. (2)

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11(11), 4706–4710 (2011).
[Crossref] [PubMed]

F. Scotognella, G. Della Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone, “Plasmon dynamics in colloidal Cu2-xSe nanocrystals,” Nano Lett. 11(11), 4711–4717 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (2)

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, “Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium,” Phys. Rev. B 63(10), 104302 (2001).
[Crossref]

P. Lukashev, W. R. L. Lambrecht, T. Kotani, and M. van Schilfgaarde, “Electronic and crystal structures of Cu2-xS: full-potential electronic structure calculations,” Phys. Rev. B 76(19), 195202 (2007).
[Crossref]

Phys. Rev. Lett. (1)

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, and A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[Crossref] [PubMed]

Phys. Status Solidi (1)

B. J. Mulder, “Optical properties of crystals of cuprous sulphides (calcosite, djeurleite, Cu1.9S, and digenite),” Phys. Status Solidi 13(1), 79–88 (1972).
[Crossref]

Other (6)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. Pelton and G. W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).

O. Madelung, Semiconductor Data Handbook (Springer, 2004).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2010).

B. Palpant, “Third-order nonlinear optical response of metal nanoparticles” in Non-Linear Optical Properties of Matter, M. G. Papadopoulos, A. I. Sadlej, and J. Leszczynski, eds. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

HAADF images and size distributions of Cu2-xS nanoparticles A ((a) and (e)). B ((b) and (f)), C ((c) and (g)), and D ((d) and (h)), respectively.

Fig. 2
Fig. 2

XRD patterns of Cu2-xS nanoparticles with the standard diffraction lines of hexagonal Cu2S (JCPDS 046-1195), hexagonal Cu1.97S (JCPDS 020-0365), cubic Cu2S (JCPDS 053-0522), and cubic Cu1.8S (JCPDS 056-1256).

Fig. 3
Fig. 3

(a) Absorption spectra of Cu2-xS nanoparticles and solvent (hexane), (b) the relation between the diameter and LSPR peak wavelength, and (c) absorption spectra in modified forms.

Fig. 4
Fig. 4

Absorption saturation data of (a) Cu2-xS and (b) Au nanoparticles measured at the LSPR peak.

Fig. 5
Fig. 5

Absorption spectra (lines) and values of Imχ(3)/α0 (dots) measured for Cu2-xS and Au nanoparticles. Absorption spectrum of Au nanoparticles is enlarged by a factor of 10.

Tables (2)

Tables Icon

Table 1 Diameters, spectral parameters, and carrier densities of Cu2-xS nanoparticles

Tables Icon

Table 2 Nonlinear optical parameters for Cu2-xS and Au nanoparticles

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E l = 3 ε m ε( ω )+2 ε m E 0 = f l E 0
χ ( 3 ) =p f l 2 | f l | 2 χ NP ( 3 )
α= α 0 +βI
Im χ ( 3 ) = c 2 n 2 240 π 2 ω β,
α 0 =p ω nc | f l | 2 ε 2
χ (3) α 0 = nc ω ε 2 f l 2 χ NP (3)
σ ext ( ω )=9 ω c ε m 3 2 V 0 ε 2 ( ω ) [ ε 1 ( ω )+2 ε m ] 2 + ε 2 ( ω ) 2
ε( ω )=1 ω p 2 ω 2 +iΓω .
ω p = N e 2 ε 0 m
ε 1 ( ω )1 ω p 2 ω 2
ε 2 ( ω ) ω p 2 ω 3 Γ
σ ext ( ω ) 1 ( ω ω 0 ) 2 + ( Γ 2 ) 2
ω 0 = ω p 1+2 ε m .
σ ext ( ω ) ( ω 2 + Γ 2 ) ( ω 1 2 + Γ 2 ) 2 Γ ( ω+ ω 1 ) 2 ( ω ω 1 ) 2 + ( ω 1 2 Γ+ Γ 3 ) 2 / ω 2 .
ω 1 = ω p 2 1+2 ε m Γ 2
σ ext ( ω ) 1 ( ω ω 1 ) 2 + ( γ 2 ) 2
γ=( 1+ Γ 2 ω 1 2 )Γ

Metrics