Abstract

Nanophotonic waveguides are a promising platform to trap cold atoms using red-and blue-detuned evanescent-field optical dipole forces. The asymmetric structure of integrated waveguides leads to a large birefringence that is not encountered in cylindrically symmetric optical nanofibers. We have studied both theoretically and experimentally the modal properties and suitability of silicon nitride rib waveguides for cold-atom trapping. The dependence of the modal effective index on the rib width is explored experimentally by measuring beat lengths between propagating modes. These measurements are made using a novel spatial Fourier analysis technique based on conventional far-field imaging of elastic scattering from the waveguide. We find that the beat length between the lowest order TE00 and TM00 modes is approximately 5µm, in excellent agreement with numerical calculations. We propose to take advantage of this birefringence and mode structure to create novel, one-dimensional periodic trapping potentials for atoms within the evanescent field of the waveguide.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modal interference in optical nanofibers for sub-Angstrom radius sensitivity

Fredrik K. Fatemi, Jonathan E. Hoffman, Pablo Solano, Eliot F. Fenton, Guy Beadie, Steven L. Rolston, and Luis A. Orozco
Optica 4(1) 157-162 (2017)

Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation

Jonathan E. Hoffman, Fredrik K. Fatemi, Guy Beadie, Steven L. Rolston, and Luis A. Orozco
Optica 2(5) 416-423 (2015)

Shaping the evanescent field of optical nanofibers for cold atom trapping

C.F. Phelan, T. Hennessy, and Th. Busch
Opt. Express 21(22) 27093-27101 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Shimoda, T. C. Wang, and C. H. Townes, “Further aspects of the theory of the maser,” Phys. Rev. 102, 1308–1321 (1956).
    [Crossref]
  2. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
    [Crossref]
  3. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  4. D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Physical review letters 110, 113606 (2013).
    [Crossref] [PubMed]
  5. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [Crossref] [PubMed]
  6. M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
    [Crossref]
  7. J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express 20, 13409–13418 (2012).
    [Crossref] [PubMed]
  8. A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
    [Crossref] [PubMed]
  9. J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
    [Crossref] [PubMed]
  10. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
    [Crossref] [PubMed]
  11. J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
    [Crossref]
  12. D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
    [Crossref]
  13. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [Crossref] [PubMed]
  14. C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
    [Crossref]
  15. E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
    [Crossref]
  16. S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
    [Crossref]
  17. M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
    [Crossref] [PubMed]
  18. J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
    [Crossref]
  19. J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
    [Crossref]
  20. J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
    [Crossref]
  21. Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
    [Crossref]
  22. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
    [Crossref]
  23. R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
    [Crossref]
  24. K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
    [Crossref]
  25. T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
    [Crossref] [PubMed]
  26. S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. McGill, and J. B. Khurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3, 891–896 (2016).
    [Crossref]
  27. K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
    [Crossref]
  28. J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
    [Crossref]
  29. M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Physical Review A (Atomic, Molecular, and Optical Physics) 77, 063417 (2008).
    [Crossref]
  30. S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
    [Crossref]
  31. J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
    [Crossref]
  32. Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
    [Crossref]
  33. R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Tech. 7, 1187–1196 (1989).
    [Crossref]
  34. F. K. Fatemi and G. Beadie, “Spatially-resolved rayleigh scattering for analysis of vector mode propagation in few-mode fibers,” Opt. Express 23, 3831–3840 (2015).
    [Crossref] [PubMed]
  35. W. Eickhoff and O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
    [Crossref]
  36. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50, 2594–2600 (2011).
    [Crossref] [PubMed]
  37. J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
    [Crossref]

2016 (1)

2015 (5)

Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

F. K. Fatemi and G. Beadie, “Spatially-resolved rayleigh scattering for analysis of vector mode propagation in few-mode fibers,” Opt. Express 23, 3831–3840 (2015).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
[Crossref]

2014 (4)

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref] [PubMed]

2013 (7)

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
[Crossref]

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Physical review letters 110, 113606 (2013).
[Crossref] [PubMed]

2012 (3)

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express 20, 13409–13418 (2012).
[Crossref] [PubMed]

2011 (4)

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50, 2594–2600 (2011).
[Crossref] [PubMed]

2010 (1)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

2009 (1)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

2008 (3)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Physical Review A (Atomic, Molecular, and Optical Physics) 77, 063417 (2008).
[Crossref]

2007 (1)

2004 (1)

K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
[Crossref]

2002 (1)

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

1999 (2)

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[Crossref]

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

1989 (1)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Tech. 7, 1187–1196 (1989).
[Crossref]

1976 (1)

W. Eickhoff and O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

1956 (1)

K. Shimoda, T. C. Wang, and C. H. Townes, “Further aspects of the theory of the maser,” Phys. Rev. 102, 1308–1321 (1956).
[Crossref]

Akimov, A.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Alton, D. J.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Appel, J.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Balykin, V. I.

Bashkansky, M.

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Physical Review A (Atomic, Molecular, and Optical Physics) 77, 063417 (2008).
[Crossref]

Beadie, G.

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Beguin, J.-B.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Bookjans, E. M.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Bryant, G. W.

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Burke, J. P.

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Calvani, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Tech. 7, 1187–1196 (1989).
[Crossref]

Caponi, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Tech. 7, 1187–1196 (1989).
[Crossref]

Chang, D.

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Physical review letters 110, 113606 (2013).
[Crossref] [PubMed]

Cho, D.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[Crossref]

Choi, K. S.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Christandl, K.

K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
[Crossref]

Christensen, S. L.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Chu, S.-T.

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Cirac, J. I.

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Physical review letters 110, 113606 (2013).
[Crossref] [PubMed]

Cisternino, F.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Tech. 7, 1187–1196 (1989).
[Crossref]

Corwin, K. L.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[Crossref]

Dagenais, M.

Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

Dawkins, S. T.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

de Leon, N.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Deasy, K.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
[Crossref]

Ding, D.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Eickhoff, W.

W. Eickhoff and O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

Fatemi, F. K.

Feist, J.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Frawley, M.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Furstenberg, R.

Goban, A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
[Crossref]

Grover, J.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Gruhler, N.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Gullans, M.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Hakuta, K.

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Hlubina, P.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Hoffman, J. E.

J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
[Crossref]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Hollenbach, U.

Holmstrom, S. A.

Honda, K.

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Hood, J. D.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

Hung, C.-L.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

Ishikawa, K.

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Julienne, P. S.

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Junge, C.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
[Crossref]

Khurgin, J. B.

Kien, F. L.

Kimble, H.

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Physical review letters 110, 113606 (2013).
[Crossref] [PubMed]

Kimble, H. J.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Kozak, D. A.

Krumpholz, O.

W. Eickhoff and O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

Kübler, H.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Kumar, P.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Kumar, R.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Kuppens, S. J. M.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[Crossref]

Lacroûte, C.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Lafyatis, G. P.

K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
[Crossref]

Lee, J.

Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

Lee, J.-F.

K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
[Crossref]

Lee, S.-C.

K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
[Crossref]

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
[Crossref]

Liang, Q.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

Löw, R.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Lukin, M.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

McGill, R. A.

Melentiev, P. N.

Meng, Y.

Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

Mitsch, R.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

Mittal, S.

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

Mohr, J.

Morinaga, M.

Morrissey, M. J.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Muller, J. H.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Muniz, J. A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

Napiorkowski, M.

Nayak, K. P.

Nic Chormaic, S.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

O’Shea, D.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
[Crossref]

Orozco, L. A.

J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
[Crossref]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Painter, O.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

Park, D.

Park, D. H.

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Pechkis, J. A.

Pernice, W.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Peyronel, T.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Pfau, T.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Polzik, E. S.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Prel, E.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Pruessner, M. W.

Rabinovich, W. S.

Rauschenbeutel, A.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

Ravets, S.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Reitz, D.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

Ritter, R.

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Rolston, S. L.

Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
[Crossref]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

Russell, L.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

Salit, K.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

Schneeweiss, P.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

Shahriar, M. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Shimoda, K.

K. Shimoda, T. C. Wang, and C. H. Townes, “Further aspects of the theory of the maser,” Phys. Rev. 102, 1308–1321 (1956).
[Crossref]

Sieber, H.

Solano, P.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Sorensen, H. L.

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
[Crossref]

Stern, N. P.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Stievater, T. H.

Szczurowski, M.

Takahashi, Y.

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Tanaka, N.

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Terraciano, M. L.

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Physical Review A (Atomic, Molecular, and Optical Physics) 77, 063417 (2008).
[Crossref]

Thompson, J.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Tiecke, T.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Townes, C. H.

K. Shimoda, T. C. Wang, and C. H. Townes, “Further aspects of the theory of the maser,” Phys. Rev. 102, 1308–1321 (1956).
[Crossref]

Toyoda, K.

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Truong, V. G.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Tyndall, N.

Urbanczyk, W.

Vetsch, E.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

Volz, J.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
[Crossref]

Vuletic, V.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Wang, T. C.

K. Shimoda, T. C. Wang, and C. H. Townes, “Further aspects of the theory of the maser,” Phys. Rev. 102, 1308–1321 (1956).
[Crossref]

Wieman, C. E.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[Crossref]

Williams, C. J.

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Yabuzaki, T.

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Yu, S.-P.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

Zibrov, A.

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

AIP Advances (1)

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Meng, J. Lee, M. Dagenais, and S. L. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Atomic vapor spectroscopy in integrated photonic structures,” Appl. Phys. Lett. 107, 041101 (2015).
[Crossref]

Electron. Lett (1)

W. Eickhoff and O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quant. Electron. 18, 1763–1770 (2012).
[Crossref]

J. Lightwave Tech. (1)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Tech. 7, 1187–1196 (1989).
[Crossref]

Nat. Comm. (1)

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Comm. 4, 1548 (2013).
[Crossref]

Nature (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

New Journal of Physics (2)

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, and S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New Journal of Physics 15, 043010 (2013).
[Crossref]

New. J. Phys. (1)

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (2)

Phys. Rev. (1)

K. Shimoda, T. C. Wang, and C. H. Townes, “Further aspects of the theory of the maser,” Phys. Rev. 102, 1308–1321 (1956).
[Crossref]

Phys. Rev. A (2)

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83, 063830 (2011).
[Crossref]

J. P. Burke, S.-T. Chu, G. W. Bryant, C. J. Williams, and P. S. Julienne, “Designing neutral-atom nanotraps with integrated optical waveguides,” Phys. Rev. A 65, 043411 (2002).
[Crossref]

Phys. Rev. Lett. (8)

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref] [PubMed]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref] [PubMed]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

J.-B. Beguin, E. M. Bookjans, S. L. Christensen, H. L. Sorensen, J. H. Muller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[Crossref]

Physical Review A (2)

K. Christandl, G. P. Lafyatis, S.-C. Lee, and J.-F. Lee, “One-and two-dimensional optical lattices on a chip for quantum computing,” Physical Review A 70, 032302 (2004).
[Crossref]

Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki, “Quantum nondemolition measurement of spin via the paramagnetic faraday rotation,” Physical Review A 60, 4974 (1999).
[Crossref]

Physical Review A (Atomic, Molecular, and Optical Physics) (1)

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, “Faraday spectroscopy of atoms confined in a dark optical trap,” Physical Review A (Atomic, Molecular, and Optical Physics) 77, 063417 (2008).
[Crossref]

Physical review letters (1)

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Physical review letters 110, 113606 (2013).
[Crossref] [PubMed]

PRL (2)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” PRL 104, 203603 (2010).
[Crossref]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” PRL 111, 193601 (2013).
[Crossref]

Science (1)

J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuletić, and M. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref] [PubMed]

Sensors (1)

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review,” Sensors 13, 10449 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a): The geometry of our evanescent SiN rib waveguides. (b): A false-color SEM of a waveguide facet. (c): The intensity of the quasi-TE00 mode, which is predominantly polarized with an in-plane (lateral) electric field.(d): The intensity of the quasi-TM00 mode, which is predominantly polarized with an out-of-plane (vertical) electric field.
Fig. 2
Fig. 2 The dependence of neff on the rib width for each allowed waveguide mode at a wavelength of 780nm. Outlined regions depict widths for which modes are strongly coupled.
Fig. 3
Fig. 3 Finite-element calculation of the optical dipole potential of a 1 µm wide SiN waveguide, using the TE00 modes at a blue-detuned wavelength of 760 nm (10.5 mW) and a red-detuned wavelength of 1000 nm (25 mW). (a): Two-dimensional transverse plane of the optical dipole potential. The blue island above the waveguide core shows a region of potential minimum suitable for trapping, approximately 125 nm above the waveguide surface. (b): The potential profile along an out-of-plane (y) path from the waveguide surface to 500 nm above, including the van der Waals potential, at the position indicated by the dashed line in (a).
Fig. 4
Fig. 4 The arrows indicate the transverse ellipticity (ϵ) of the TE00 mode at 760 nm, and the surface plot is the product of the magnitude of the transverse ellipticity and the intensity. Since the longitudinal ellipticity in this case is exactly zero, the ellipticity amplitude at x=0 vanishes.
Fig. 5
Fig. 5 (a): Finite-element calculation of the longitudinal (z) component of the ellipticity (iϵ × ϵ*) in the case of simultaneous excitation of the TE00 and TM00 modes at 760 nm. This component of the ellipticity oscillates at the beat length for these two modes. All spatial dimensions are in microns.
Fig. 6
Fig. 6 (a): Finite-element calculation of the optical dipole potential for F = 1, mF = 1 atoms 140 nm above the top of a 1 µm wide SiN waveguide with simultaneous excitation of copropagating TE00 and TM00 modes. The blue islands show regions of potential wells suitable for trapping, spaced at the TE00-TM00 beat length of the blue-detuned field. The red-detuned field is launched with an electric field polarized in-plane, and the blue-detuned field is launched with equal components of in-plane and out-of-plane polarization. All spatial dimensions are in microns. (b): The dipole potential on a cross-section in the xy (transverse) plane at the location indicated in (a). (c): The potential profile along an out-of-plane (y) path from the waveguide surface to 500 nm above, including the van der Waals potential, at the position indicated by the line in (a) and (b).
Fig. 7
Fig. 7 45-degree waveguide polarization-dependent far-field imaging for mode-beating measurements. Shown on the right is a typical scattering image from light at 780 nm launched into a 1 µm wide waveguide (not to scale).
Fig. 8
Fig. 8 Measured beat lengths of a nominally 1 µm wide waveguide at 780 nm using our differential Fourier transform method. (a): The FFT of data obtained with the polarizer oriented −45° subtracted from data obtained with the polarizer oriented at +45°. (b): The FFT of data obtained with the polarizer oriented 0° subtracted from data obtained with the polarizer oriented at +90°.
Fig. 9
Fig. 9 Measured beat length vs. waveguide width for four different waveguides. The lines are calculated from the effective indices shown in Fig. 2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z b = 2 π β i β j = λ n eff ( i ) n eff ( j ) .
U O D = π c 2 I ( x , y ) 2 ω 3 [ ( Γ D 1 Δ D 1 + 2 Γ D 2 Δ D 2 ) g F ( Γ D 1 Δ D 1 Γ D 2 Δ D 2 ) ϵ ( x , y ) F ]
ϵ = i e × e *
U v d W = 0.12 Γ λ 3 ( 2 π ) 3 y 3

Metrics