Abstract

Wideband perfect light absorbers covering visible and near-infrared solar optical radiations are significant for solar thermal energy systems. In this work, titanium and silicon dioxide multilayer thin film structures were investigated for perfect light absorption in wideband solar optical radiation spectral range from 400 nm to 2500 nm wavelength. Wideband solar light absorbers with different numbers of titanium and silicon dioxide layers and different layer thicknesses were designed, fabricated and characterized. It is found that the optimal wideband solar light absorber consists of only six titanium and silicon dioxide layers that form two cascade optical nanocavities, and increasing the number of optical cavities does not improve optical absorption in the solar spectrum. A super-wideband solar light absorber 97.97% total absorptance over the wavelength range from 400 nm to 1700 nm has been experimentally demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

Seyed Sadreddin Mirshafieyan, Ting S. Luk, and Junpeng Guo
Opt. Mater. Express 6(4) 1032-1042 (2016)

Design of input couplers for efficient silicon thin film solar absorbers

Sun-Kyung Kim, Kyung-Deok Song, and Hong-Gyu Park
Opt. Express 20(S6) A997-A1004 (2012)

Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells

Shrestha Basu Mallick, Mukul Agrawal, and Peter Peumans
Opt. Express 18(6) 5691-5706 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  2. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  3. V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
    [Crossref]
  4. N. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
    [Crossref]
  5. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  6. X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, L. Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15(4), 1907–1912 (2007).
    [Crossref] [PubMed]
  7. R. S. Kulkarni, “Optimization of thin film multilayered coating for absorption of solar radiation,” Int. J. Chem. Tech. Res. 7(2), 1045–1052 (2015).
  8. W. X. Zhou, Y. Shen, E. T. Hu, Y. Zhao, M. Y. Sheng, Y. X. Zheng, S. Y. Wang, Y. P. Lee, C. Z. Wang, D. W. Lynch, and L. Y. Chen, “Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability,” Opt. Express 20(27), 28953–28962 (2012).
    [Crossref] [PubMed]
  9. M. H. Liu, E. T. Hu, Y. Yao, K. Y. Zang, N. He, J. Li, Y. X. Zheng, S. Y. Wang, O. Yoshie, Y. Lee, C. Z. Wang, D. W. Lynch, and L. Y. Chen, “High efficiency of photon-to-heat conversion with a 6-layered metal/dielectric film structure in the 250-1200 nm wavelength region,” Opt. Express 22(S7Suppl 7), A1843–A1852 (2014).
    [Crossref] [PubMed]
  10. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
    [PubMed]
  11. J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
    [Crossref]
  12. T. D. Corrigan, D. H. Park, H. D. Drew, S. H. Guo, P. W. Kolb, W. N. Herman, and R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
    [Crossref] [PubMed]
  13. S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energy Mater. Sol. Cells 90(3), 243–261 (2006).
    [Crossref]
  14. J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
    [Crossref]
  15. J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
    [Crossref]
  16. M. R. Nejati, V. Fathollahi, and M. K. Asadi, “Computer simulation of the optical properties of high-temperature cermet solar selective coatings,” Sol. Energy 78(2), 235–241 (2005).
    [Crossref]
  17. Q. Zhang, “Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology,” J. Phys. D Appl. Phys. 31(4), 355–362 (1998).
    [Crossref]
  18. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
    [Crossref]
  19. W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
    [Crossref] [PubMed]
  20. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
    [Crossref]
  21. H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
    [Crossref]
  22. L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
    [Crossref]
  23. P. Yeh, Optical Waves in Layered Media (Wiley, 2005), Chap. 5.
  24. K.-K. Law, “Analysis of a coupled absorptive Fabry-Perot resonator in a passive-active configuration,” Opt. Lett. 19(9), 607–609 (1994).
    [Crossref] [PubMed]

2015 (1)

R. S. Kulkarni, “Optimization of thin film multilayered coating for absorption of solar radiation,” Int. J. Chem. Tech. Res. 7(2), 1045–1052 (2015).

2014 (2)

2013 (2)

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
[PubMed]

2012 (2)

2009 (2)

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

2007 (1)

2006 (3)

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energy Mater. Sol. Cells 90(3), 243–261 (2006).
[Crossref]

2005 (2)

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[Crossref]

M. R. Nejati, V. Fathollahi, and M. K. Asadi, “Computer simulation of the optical properties of high-temperature cermet solar selective coatings,” Sol. Energy 78(2), 235–241 (2005).
[Crossref]

2003 (1)

N. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

2000 (1)

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
[Crossref]

1998 (1)

Q. Zhang, “Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology,” J. Phys. D Appl. Phys. 31(4), 355–362 (1998).
[Crossref]

1995 (1)

H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[Crossref]

1994 (1)

1977 (1)

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[Crossref]

1976 (1)

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Aközbek, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
[PubMed]

Asadi, M. K.

M. R. Nejati, V. Fathollahi, and M. K. Asadi, “Computer simulation of the optical properties of high-temperature cermet solar selective coatings,” Sol. Energy 78(2), 235–241 (2005).
[Crossref]

Badescu, V.

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
[PubMed]

Boer, M.

H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[Crossref]

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Branz, H. M.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chang, C. W.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Chen, H. J.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Chen, L. Y.

Chen, M. J.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Chen, Y. R.

Corrigan, T. D.

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
[PubMed]

Ding, X. M.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Drew, H. D.

Elwenspoek, M.

H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[Crossref]

Fan, J. C. C.

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[Crossref]

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[Crossref]

Fan, S.

Fathollahi, V.

M. R. Nejati, V. Fathollahi, and M. K. Asadi, “Computer simulation of the optical properties of high-temperature cermet solar selective coatings,” Sol. Energy 78(2), 235–241 (2005).
[Crossref]

Ge, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Guo, S. H.

Harder, N.

N. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

He, N.

Herman, W. N.

Hou, X. Y.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Hsu, W. C.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Hu, E. T.

Huang, J. J.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Jansen, H.

H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[Crossref]

Jiang, N.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Kolb, P. W.

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Kulkarni, R. S.

R. S. Kulkarni, “Optimization of thin film multilayered coating for absorption of solar radiation,” Int. J. Chem. Tech. Res. 7(2), 1045–1052 (2015).

Law, K.-K.

Lee, Y.

Lee, Y. P.

Legtenberg, R.

H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, J.

Li, X. F.

Lin, C. W.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Liu, M. H.

Lu, W.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Lu, X.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Lynch, D. W.

Ma, L. L.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
[PubMed]

Meier, D. L.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Miao, J.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nejati, M. R.

M. R. Nejati, V. Fathollahi, and M. K. Asadi, “Computer simulation of the optical properties of high-temperature cermet solar selective coatings,” Sol. Energy 78(2), 235–241 (2005).
[Crossref]

Page, M. R.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Park, D. H.

Phaneuf, R. J.

Prentice, J. S. C.

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Rephaeli, E.

Shao, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Shen, Y.

Sheng, M. Y.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Spura, S. A.

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[Crossref]

Stradins, P.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Tjahjono, B.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Wäckelgård, E.

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energy Mater. Sol. Cells 90(3), 243–261 (2006).
[Crossref]

Wang, C. Z.

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, S. Y.

Wang, W. C.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Wurfel, P.

N. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Yang, M. J.

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Yao, Y.

Yoshie, O.

Yost, V. E.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yuan, H.-C.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Zang, K. Y.

Zavracky, P. M.

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[Crossref]

Zhang, Q.

Q. Zhang, “Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology,” J. Phys. D Appl. Phys. 31(4), 355–362 (1998).
[Crossref]

Zhao, S.

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energy Mater. Sol. Cells 90(3), 243–261 (2006).
[Crossref]

Zhao, Y.

Zheng, Y. X.

Zhou, P.

Zhou, W. X.

Zhou, Y. C.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (1)

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu, and M. J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

J. C. C. Fan and S. A. Spura, “Selective black absorbers using rf-sputtered Cr2O3/Cr cermet films,” Appl. Phys. Lett. 30(10), 511–513 (1977).
[Crossref]

J. C. C. Fan and P. M. Zavracky, “Selective black absorbers using MgO/Au cermet films,” Appl. Phys. Lett. 29(8), 478–480 (1976).
[Crossref]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Int. J. Chem. Tech. Res. (1)

R. S. Kulkarni, “Optimization of thin film multilayered coating for absorption of solar radiation,” Int. J. Chem. Tech. Res. 7(2), 1045–1052 (2015).

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Micromech. Microeng. (1)

H. Jansen, M. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[Crossref]

J. Phys. D Appl. Phys. (2)

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D Appl. Phys. 33(24), 3139–3145 (2000).
[Crossref]

Q. Zhang, “Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology,” J. Phys. D Appl. Phys. 31(4), 355–362 (1998).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Renew. Energy (1)

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[Crossref]

Sci. Rep. (1)

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(10), 3203 (2013).
[PubMed]

Semicond. Sci. Technol. (1)

N. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Sol. Energy (1)

M. R. Nejati, V. Fathollahi, and M. K. Asadi, “Computer simulation of the optical properties of high-temperature cermet solar selective coatings,” Sol. Energy 78(2), 235–241 (2005).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energy Mater. Sol. Cells 90(3), 243–261 (2006).
[Crossref]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 2005), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The metal-dielectric multilayer thin films cascade optical cavity wideband perfect solar light absorber structure.

Fig. 2
Fig. 2

Calculated optical absorptance versus wavelength and Ti layer thickness for devices of different thicknesses of SiO2 layer: (a) 50 nm, (b) 80 nm, (c) 110 nm, (d) 140 nm.

Fig. 3
Fig. 3

Calculated optical absorptance versus wavelength and dielectric layer thickness for different thicknesses of Ti layer: (a) 5 nm, (b) 10 nm, (c) 15 nm, (d) 20 nm.

Fig. 4
Fig. 4

Calculated optical absorptance versus wavelength and anti-reflection layer thickness.

Fig. 5
Fig. 5

Calculated absorptance versus wavelength for devices with different number of cavities.

Fig. 6
Fig. 6

Calculated optical absorptance versus wavelength and angle of incidence for (a) TE polarization, (b) TM polarizations and (c) un-polarized light. The best absorption structure consists of a 110 nm SiO2 anti-reflection layer, two Ti/SiO2 optical cavities with a 10 nm Ti layer and a 110 nm SiO2 layer in each cavity, and a 200 nm Ti at the bottom on a silicon wafer.

Fig. 7
Fig. 7

Measured optical absorptance of devices with (a) different titanium layer thicknesses, (b) different SiO2 layer thicknesses, (c) different thicknesses of anti-reflection layer, and (d) different number of optical cavity. The device pictures are shown as the insets.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Total Solar Optical Absorptance

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D i =[ 1 1 n i cos( θ i ) n i cos( θ i ) ]
D i =[ cos( θ i ) cos( θ i ) n i n i ]
P i =[ e i φ i 0 0 e i φ i ]
M=[ M 11 M 21 M 21 M 22 ]= D 0 1 D 1 P 1 D 1 1 ( D 2 P 2 D 2 1 D 3 P 3 D 3 1 ) N D 4 P 4 D 4 1 D s
R= | M 21 M 11 | 2
T= n s cos( θ s ) n 0 cos( θ 0 ) | 1 M 11 | 2
α= λ 1 λ 2 A(λ) L sun (λ)dλ λ 1 λ 2 L sun (λ)dλ

Metrics