Abstract

Experimental studies of amplified spontaneous emission (ASE) and lasing from various colloidal II-VI semiconductor nanocrystals have been used as inputs to several microscopic models for underlying optical gain, usually involving permutations of quantum confined multiple excitonic states. Here we focus on particular types of CdSe/ZnCdS and CdSe/ZnS/ZnCdS colloidal quantum dot (CQD) films and elucidate on the discovery of single-exciton states at the fundamental edge as a dominant mechanism for optical gain at room temperature. Pump-probe spectroscopic techniques enable us to measure the onset of gain at ensemble-average exciton occupancy per CQD, <N> = 0.6 and 0.7 for the two types of CQD films at room temperature. Time-resolved measurements, in turn, show how optical gain persists well into the time regime associated with spontaneous emission (nanoseconds), thus providing direct evidence for how the non-radiative Auger recombination processes (~100 ps) can be thwarted. In addition to benefits of the material assets of densely packed CQD films with high luminescence efficiency (quantum yield ~90%) and nanoparticle monodispersity therein, we propose that access to the single-exciton gain regime at room temperature requires a careful spectral balance between the lowest exciton absorption resonance and its corresponding red-shifted spontaneous emission maximum (“Stokes shift”).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers

Kwangdong Roh, Cuong Dang, Joonhee Lee, Songtao Chen, Jonathan S. Steckel, Seth Coe-Sullivan, and Arto Nurmikko
Opt. Express 22(15) 18800-18806 (2014)

Nanosecond colloidal quantum dot lasers for sensing

B. Guilhabert, C. Foucher, A-M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H.D. Sun, H.V. Demir, M.D. Dawson, and N. Laurand
Opt. Express 22(6) 7308-7319 (2014)

CdSxSe1-x/ZnS semiconductor nanocrystal laser with sub 10kW/cm2 threshold and 40nJ emission output at 600 nm

L. J. McLellan, B. Guilhabert, N. Laurand, and M. D. Dawson
Opt. Express 24(2) A146-A153 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  2. L. E. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
    [Crossref]
  3. A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16, 772–775 (1982).
  4. A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).
  5. G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
    [Crossref]
  6. M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
    [Crossref]
  7. S. Jun, E. J. Jang, and Y. S. Chung, “Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures,” Nanotechnology 17(19), 4806–4810 (2006).
    [Crossref]
  8. P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
    [Crossref] [PubMed]
  9. J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs generate light for next-generation displays,” Photon. Spectra 48, 55–61 (2014).
  10. M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
    [Crossref] [PubMed]
  11. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [Crossref] [PubMed]
  12. P. V. Kamat, “Quantum dot solar cells, semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
    [Crossref]
  13. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
    [Crossref] [PubMed]
  14. K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
    [Crossref]
  15. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
    [Crossref] [PubMed]
  16. C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
    [Crossref] [PubMed]
  17. X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
    [Crossref] [PubMed]
  18. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
    [Crossref] [PubMed]
  19. C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
    [Crossref]
  20. K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
    [Crossref] [PubMed]
  21. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  22. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17(18), 15975–15982 (2009).
    [Crossref] [PubMed]
  23. B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
    [Crossref] [PubMed]
  24. C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
    [Crossref] [PubMed]
  25. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
    [Crossref] [PubMed]
  26. Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
    [Crossref]
  27. S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
    [Crossref] [PubMed]
  28. M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
    [Crossref] [PubMed]
  29. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
    [Crossref] [PubMed]
  30. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
    [Crossref] [PubMed]
  31. S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
    [Crossref]
  32. M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
    [Crossref] [PubMed]
  33. J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
    [Crossref] [PubMed]
  34. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
    [Crossref] [PubMed]
  35. M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
    [Crossref]
  36. M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
    [Crossref] [PubMed]
  37. D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
    [Crossref] [PubMed]
  38. A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
    [Crossref] [PubMed]
  39. J. I. Climente, J. L. Movilla, and J. Planelles, “Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals,” J. Appl. Phys. 111(4), 043509 (2012).
    [Crossref]
  40. G. E. Cragg and A. L. Efros, “Suppression of auger processes in confined structures,” Nano Lett. 10(1), 313–317 (2010).
    [Crossref] [PubMed]
  41. F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
    [Crossref] [PubMed]
  42. X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B Condens. Matter 45(12), 6961–6964 (1992).
    [Crossref] [PubMed]
  43. L. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Sov. J. of Exp. Theor. Phys. Lett. 29, 658 (1979).
  44. T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 47(8), 4569–4584 (1993).
    [Crossref] [PubMed]
  45. J. B. Li and J. B. Xia, “Exciton states and optical spectra in CdSe nanocrystallite quantum dots,” Phys. Rev. B 61(23), 15880–15886 (2000).
    [Crossref]
  46. A. Bagga, P. K. Chattopadhyay, and S. Ghosh, “Origin of Stokes shift in InAs and CdSe quantum dots: Exchange splitting of excitonic states,” Phys. Rev. B 74(3), 035341 (2006).
    [Crossref]

2016 (2)

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

2015 (3)

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
[Crossref] [PubMed]

2014 (6)

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs generate light for next-generation displays,” Photon. Spectra 48, 55–61 (2014).

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

2013 (1)

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

2012 (3)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

J. I. Climente, J. L. Movilla, and J. Planelles, “Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals,” J. Appl. Phys. 111(4), 043509 (2012).
[Crossref]

2011 (2)

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

2010 (3)

G. E. Cragg and A. L. Efros, “Suppression of auger processes in confined structures,” Nano Lett. 10(1), 313–317 (2010).
[Crossref] [PubMed]

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

2009 (3)

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17(18), 15975–15982 (2009).
[Crossref] [PubMed]

2008 (2)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

P. V. Kamat, “Quantum dot solar cells, semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

2007 (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

2006 (2)

S. Jun, E. J. Jang, and Y. S. Chung, “Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures,” Nanotechnology 17(19), 4806–4810 (2006).
[Crossref]

A. Bagga, P. K. Chattopadhyay, and S. Ghosh, “Origin of Stokes shift in InAs and CdSe quantum dots: Exchange splitting of excitonic states,” Phys. Rev. B 74(3), 035341 (2006).
[Crossref]

2004 (2)

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
[Crossref]

2003 (1)

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

2000 (3)

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

J. B. Li and J. B. Xia, “Exciton states and optical spectra in CdSe nanocrystallite quantum dots,” Phys. Rev. B 61(23), 15880–15886 (2000).
[Crossref]

1997 (1)

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

1996 (3)

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
[Crossref] [PubMed]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

1995 (1)

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

1993 (1)

T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 47(8), 4569–4584 (1993).
[Crossref] [PubMed]

1992 (1)

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B Condens. Matter 45(12), 6961–6964 (1992).
[Crossref] [PubMed]

1983 (1)

L. E. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
[Crossref]

1982 (2)

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16, 772–775 (1982).

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

1981 (1)

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

1979 (1)

L. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Sov. J. of Exp. Theor. Phys. Lett. 29, 658 (1979).

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Ahn, S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Alexander-Webber, J. A.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Anikeeva, P. O.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17(18), 15975–15982 (2009).
[Crossref] [PubMed]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Bagga, A.

A. Bagga, P. K. Chattopadhyay, and S. Ghosh, “Origin of Stokes shift in InAs and CdSe quantum dots: Exchange splitting of excitonic states,” Phys. Rev. B 74(3), 035341 (2006).
[Crossref]

Balet, L. P.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Bawendi, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

Bawendi, M. G.

Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
[Crossref] [PubMed]

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

Beard, M. C.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Bezel, I. V.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Breen, C.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Brovelli, S.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Brus, L. E.

L. E. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
[Crossref]

Caruge, J. M.

Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
[Crossref]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Chae, S. I.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Chan, Y.

Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
[Crossref]

Chattopadhyay, P. K.

A. Bagga, P. K. Chattopadhyay, and S. Ghosh, “Origin of Stokes shift in InAs and CdSe quantum dots: Exchange splitting of excitonic states,” Phys. Rev. B 74(3), 035341 (2006).
[Crossref]

Chen, S.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

Cho, K. S.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Choi, B. L.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Choi, C.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Choi, M. K.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Chong, W. K.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Christodoulou, S.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Chung, Y. S.

S. Jun, E. J. Jang, and Y. S. Chung, “Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures,” Nanotechnology 17(19), 4806–4810 (2006).
[Crossref]

Cingolani, R.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Climente, J. I.

J. I. Climente, J. L. Movilla, and J. Planelles, “Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals,” J. Appl. Phys. 111(4), 043509 (2012).
[Crossref]

Coe-Sullivan, S.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs generate light for next-generation displays,” Photon. Spectra 48, 55–61 (2014).

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

Cragg, G. E.

G. E. Cragg and A. L. Efros, “Suppression of auger processes in confined structures,” Nano Lett. 10(1), 313–317 (2010).
[Crossref] [PubMed]

Crooker, S. A.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Dabbousi, B. O.

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

Dahan, M.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Dahlberg, P. D.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Dang, C.

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

Delikanli, S.

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

Demir, H. V.

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

Dev, K.

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

Di Stasio, F.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Dolzhnikov, D. S.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Efros, A. L.

G. E. Cragg and A. L. Efros, “Suppression of auger processes in confined structures,” Nano Lett. 10(1), 313–317 (2010).
[Crossref] [PubMed]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
[Crossref] [PubMed]

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16, 772–775 (1982).

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16, 772–775 (1982).

Ekimov, A. I.

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Ellingson, R. J.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Engel, G. S.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Fedin, I.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Gao, Y.

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

García-Santamaría, F.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Ghosh, S.

A. Bagga, P. K. Chattopadhyay, and S. Ghosh, “Origin of Stokes shift in InAs and CdSe quantum dots: Exchange splitting of excitonic states,” Phys. Rev. B 74(3), 035341 (2006).
[Crossref]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Grätzel, M.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Gray, A. L.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Grim, J. Q.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Guyot-Sionnest, P.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Guzelturk, B.

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Han, J.

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

Han, J. Y.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Herz, L. M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Hines, M. A.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Ho, J.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs generate light for next-generation displays,” Photon. Spectra 48, 55–61 (2014).

Hollingsworth, J. A.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Hong, X.

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B Condens. Matter 45(12), 6961–6964 (1992).
[Crossref] [PubMed]

Hörantner, M. T.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Htoon, H.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Huang, J.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Hyeon, T.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Ishihara, T.

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B Condens. Matter 45(12), 6961–6964 (1992).
[Crossref] [PubMed]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Iwamoto, S.

Jang, E.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Jang, E. J.

S. Jun, E. J. Jang, and Y. S. Chung, “Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures,” Nanotechnology 17(19), 4806–4810 (2006).
[Crossref]

Jeon, H.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Johnson, J. C.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

Johnston, M. B.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Joo, W. J.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Jun, S.

S. Jun, E. J. Jang, and Y. S. Chung, “Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures,” Nanotechnology 17(19), 4806–4810 (2006).
[Crossref]

Kamat, P. V.

P. V. Kamat, “Quantum dot solar cells, semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

Kang, K.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Keldysh, L.

L. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Sov. J. of Exp. Theor. Phys. Lett. 29, 658 (1979).

Kelestemur, Y.

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

Kim, B. K.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kim, D. C.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Kim, D. H.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Kim, H.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Kim, J. H.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Kim, J. M.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kim, S. J.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Kim, T. H.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Klimov, V. I.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Krahne, R.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

Kumagai, N.

Kuno, M.

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

Kwon, S. J.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lanzani, G.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

Law, M.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Lee, E. K.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lee, J.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Lee, J. K.

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

Lee, S. J.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lester, L. F.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Lévi, S.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Li, H.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Li, J. B.

J. B. Li and J. B. Xia, “Exciton states and optical spectra in CdSe nanocrystallite quantum dots,” Phys. Rev. B 61(23), 15880–15886 (2000).
[Crossref]

Li, L.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Lim, S. S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Liu, X.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Lu, Y.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Luccardini, C.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Lupo, M. G.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

Luther, J. M.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

Malloy, K. J.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Manna, L.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

Mathews, N.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Mhaisalkar, S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Mikulec, F. V.

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

Moreels, I.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Morris, S. M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Movilla, J. L.

J. I. Climente, J. L. Movilla, and J. Planelles, “Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals,” J. Appl. Phys. 111(4), 043509 (2012).
[Crossref]

Mutlugun, E.

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nayak, P. K.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Newell, T. C.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Nicholas, R. J.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Nirmal, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nomura, M.

Norris, D. J.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
[Crossref] [PubMed]

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

Nozik, A. J.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

Nurmikko, A.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
[Crossref] [PubMed]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Nurmikko, A. V.

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B Condens. Matter 45(12), 6961–6964 (1992).
[Crossref] [PubMed]

Olutas, M.

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

Onushchenko, A. A.

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Ota, Y.

Park, C.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Patel, J. B.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Planelles, J.

J. I. Climente, J. L. Movilla, and J. Planelles, “Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals,” J. Appl. Phys. 111(4), 043509 (2012).
[Crossref]

Protière, M.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Reiss, P.

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Riede, M. K.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Riveau, B.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Roh, K.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Rosen, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
[Crossref] [PubMed]

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

Rostaing, P.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Sabba, D.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Saliba, M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Schaller, R. D.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

She, C.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Snaith, H. J.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Snee, P. T.

Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
[Crossref]

Steckel, J. S.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs generate light for next-generation displays,” Photon. Spectra 48, 55–61 (2014).

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22(15), 18800–18806 (2014).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

Stintz, A.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Stranks, S. D.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Sum, T. C.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Sun, X. W.

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

Takagahara, T.

T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 47(8), 4569–4584 (1993).
[Crossref] [PubMed]

Talapin, D. V.

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

Tan, S. T.

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

Tretiak, S.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

Triller, A.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Varangis, P. M.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

Viswanatha, R.

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Wang, J. T. W.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Wenger, B.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Wood, S. M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Xia, J. B.

J. B. Li and J. B. Xia, “Exciton states and optical spectra in CdSe nanocrystallite quantum dots,” Phys. Rev. B 61(23), 15880–15886 (2000).
[Crossref]

Xing, G.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Yang, J.

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Yang, X.

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

Yantara, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Zavelani-Rossi, M.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

Zhang, Y.

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

ACS Nano (4)

X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir, “Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers,” ACS Nano 8(8), 8224–8231 (2014).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified spontaneous emission and lasing in colloidal nanoplatelets,” ACS Nano 8(7), 6599–6605 (2014).
[Crossref] [PubMed]

C. She, I. Fedin, D. S. Dolzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal cdse nanoplatelets,” ACS Nano 9(10), 9475–9485 (2015).
[Crossref] [PubMed]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic-inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Y. Chan, J. M. Caruge, P. T. Snee, and M. G. Bawendi, “Multiexcitonic two-state lasing in a CdSe nanocrystal laser,” Appl. Phys. Lett. 85(13), 2460–2462 (2004).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Chem. Rev. (1)

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev. 110(11), 6873–6890 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures,” IEEE J. Quantum Electron. 36(11), 1272–1279 (2000).
[Crossref]

J. Appl. Phys. (1)

J. I. Climente, J. L. Movilla, and J. Planelles, “Effect of interface alloying and band-alignment on the Auger recombination of heteronanocrystals,” J. Appl. Phys. 111(4), 043509 (2012).
[Crossref]

J. Chem. Phys. (2)

L. E. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
[Crossref]

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state,” J. Chem. Phys. 106(23), 9869–9882 (1997).
[Crossref]

J. Phys. Chem. (1)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

J. Phys. Chem. B (1)

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime,” J. Phys. Chem. B 108(30), 10625–10630 (2004).
[Crossref]

J. Phys. Chem. C (1)

P. V. Kamat, “Quantum dot solar cells, semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

JETP Lett. (1)

A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Nano Lett. (2)

G. E. Cragg and A. L. Efros, “Suppression of auger processes in confined structures,” Nano Lett. 10(1), 313–317 (2010).
[Crossref] [PubMed]

F. García-Santamaría, S. Brovelli, R. Viswanatha, J. A. Hollingsworth, H. Htoon, S. A. Crooker, and V. I. Klimov, “Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface,” Nano Lett. 11(2), 687–693 (2011).
[Crossref] [PubMed]

Nanoscale (1)

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

S. Jun, E. J. Jang, and Y. S. Chung, “Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures,” Nanotechnology 17(19), 4806–4810 (2006).
[Crossref]

Nat. Commun. (1)

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, “Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing,” Nat. Commun. 6, 7149–7156 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Nature (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Photon. Spectra (1)

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs generate light for next-generation displays,” Photon. Spectra 48, 55–61 (2014).

Phys. Rev. B (2)

J. B. Li and J. B. Xia, “Exciton states and optical spectra in CdSe nanocrystallite quantum dots,” Phys. Rev. B 61(23), 15880–15886 (2000).
[Crossref]

A. Bagga, P. K. Chattopadhyay, and S. Ghosh, “Origin of Stokes shift in InAs and CdSe quantum dots: Exchange splitting of excitonic states,” Phys. Rev. B 74(3), 035341 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (4)

T. Takagahara, “Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 47(8), 4569–4584 (1993).
[Crossref] [PubMed]

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B Condens. Matter 45(12), 6961–6964 (1992).
[Crossref] [PubMed]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states,” Phys. Rev. B Condens. Matter 54(7), 4843–4856 (1996).
[Crossref] [PubMed]

D. J. Norris, A. L. Efros, M. Rosen, and M. G. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B Condens. Matter 53(24), 16347–16354 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros, and M. Rosen, “Observation of the dark exciton in CdSe quantum dots,” Phys. Rev. Lett. 75(20), 3728–3731 (1995).
[Crossref] [PubMed]

Science (2)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Small (1)

P. Reiss, M. Protière, and L. Li, “Core/Shell semiconductor nanocrystals,” Small 5(2), 154–168 (2009).
[Crossref] [PubMed]

Sov. J. of Exp. Theor. Phys. Lett. (1)

L. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Sov. J. of Exp. Theor. Phys. Lett. 29, 658 (1979).

Sov. Phys. Semicond. (1)

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16, 772–775 (1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structural characteristics of CQDs and their spin-cast, densely packed films. (a) TEM images of individual CdSe/ZnCdS CQDs showing pyramidal-type shape anisotropy, and (b) more spherical CdSe/ZnS/ZnCdS CQDs. Insets are cartoons of each type of CQD internal structure with red, green and yellow representing CdSe, ZnS, and ZnCdS layers, respectively; (c) SEM cross-sectional image of a close-packed CQD film on a silicon substrate (chosen for ease of cleaving and conducting). Individual CQDs within the close-packed assembly are somewhat visible with the films possessing an optically smooth top surface. XRD patterns for (d) CdSe/ZnCdS and (e) CdSe/ZnS/ZnCdS CQDs, indicative of a wurtzite crystal structure for both cases. For reference, the red “ticks” represent the well-known diffraction peak positions for bulk wurtzite CdSe.

Fig. 2
Fig. 2

Absorption (dashed) and PL (solid) spectra from close-packed CQD films at room temperature. The PL spectra are red-shifted with respect to their lowest (and distinct) 1S(e)-1S3/2(h) exciton absorption peaks by 17 and 52 meV, respectively. Note that while the CdSe/ZnCdS CQD films have a larger Stoke shift, their PL linewidth is broader whereas the CdSe/ZnS/ZnCdS CQDs show a narrow PL linewidth (27 meV of HWHM).

Fig. 3
Fig. 3

PL spectra from 10 single (a) CdSe/ZnCdS and (b) CdSe/ZnS/ZnCds CQDs at room temperature.

Fig. 5
Fig. 5

ASE spectra at various temperatures for the (a-c) CdSe/ZnCdS and (d-f) CdSe/ZnS/ZnCdS CQD films.

Fig. 6
Fig. 6

Threshold characteristics of edge emitted ASE signals as a function of <N> at various temperatures for the (a) CdSe/ZnCdS and (d) CdSe/ZnS/ZnCdS CQDs. The Stokes shift and the linewidth of the PL as a function of temperature for the (b) CdSe/ZnCdS and (e) CdSe/ZnS/ZnCdS CQDs. The location of the spectral peaks of the PL, ASE and the first absorption spectra at the 1S(e)-1S3/2(h) exciton resonance for the (c) CdSe/ZnCdS and (f) CdSe/ZnS/ZnCdS CQDs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P( n )= n n e n n! ,

Metrics