Abstract

The refractive indices of ordinary and extraordinary waves (no and ne) of congruent LiNbO3 (CLN) in the terahertz (THz) band are measured at different temperatures. Extended Cauchy equations are proposed to describe the temperature- and frequency-dependent refractive indices. With less than 0.5% deviation, both no and ne can be obtained accurately. The values of no and ne are ~7 and ~5.4, respectively, which are much larger than those in the visible band. The extremely high birefringence (~1.6) may lead to some interesting applications of linear, electro-optic, and nonlinear optical effects of CLN. As an example, true zero-order THz waveplates (WPs) could be obtained with considerable low loss based on thin CLN wafers. The working frequency can be tuned by changing the environmental temperature. Moreover, wide bandwidth achromatic THz WPs were also achievable by stacking four CLN wafers together with precise orientation control.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sellmeier equation for doubly Er/Mg-doped congruent LiNbO3 crystals

De-Long Zhang, Qing-Zhong Yang, Ping-Rang Hua, Hong-Li Liu, Yu-Ming Cui, Liang Sun, Yu-Heng Xu, and Edwin Yue-Bun Pun
J. Opt. Soc. Am. B 26(4) 620-626 (2009)

The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range

Chan-Shan Yang, Chia-Jen Lin, Ru-Pin Pan, Christopher T. Que, Kohji Yamamoto, Masahiko Tani, and Ci-Ling Pan
J. Opt. Soc. Am. B 27(9) 1866-1873 (2010)

Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol. % MgO-doped LiNbO3 in the terahertz range

Jens Kiessling, Karsten Buse, and Ingo Breunig
J. Opt. Soc. Am. B 30(4) 950-952 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  3. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
    [Crossref]
  4. W. Shi, Y. J. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  5. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [Crossref]
  6. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  7. B. Zhang and Y. Gong, “Achromatic terahertz quarter waveplate based on silicon grating,” Opt. Express 23(11), 14897–14902 (2015).
    [Crossref] [PubMed]
  8. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  9. L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  10. N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
    [Crossref] [PubMed]
  11. J. Huo and X. Chen, “Large phase shift via polarization-coupling cascading,” Opt. Express 20(12), 13419–13424 (2012).
    [Crossref] [PubMed]
  12. G.-H. Shao, X.-S. Song, F. Xu, and Y.-Q. Lu, “Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.,” Opt. Express 20(17), 19343–19348 (2012).
    [Crossref] [PubMed]
  13. Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
    [Crossref] [PubMed]
  14. X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O. D. Mücke, and F. X. Kärtner, “Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations,” Opt. Lett. 39(18), 5403–5406 (2014).
    [Crossref] [PubMed]
  15. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
    [Crossref] [PubMed]
  16. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  17. J. Kiessling, K. Buse, and I. Breunig, “Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol. % MgO-doped LiNbO3 in the terahertz range,” J. Opt. Soc. Am. B 30(4), 950–952 (2013).
    [Crossref]
  18. X. C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010), Chap. 3.
  19. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]
  20. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
    [Crossref]
  21. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  22. G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
    [Crossref]
  23. Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
    [Crossref]
  24. Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
    [Crossref]
  25. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003).
    [Crossref] [PubMed]

2016 (2)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

2015 (3)

2014 (1)

2013 (1)

2012 (4)

J. Huo and X. Chen, “Large phase shift via polarization-coupling cascading,” Opt. Express 20(12), 13419–13424 (2012).
[Crossref] [PubMed]

G.-H. Shao, X.-S. Song, F. Xu, and Y.-Q. Lu, “Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.,” Opt. Express 20(17), 19343–19348 (2012).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

2011 (2)

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

2006 (1)

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2004 (1)

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

2003 (1)

2002 (1)

2000 (1)

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

1999 (1)

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

1962 (1)

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
[Crossref]

Ahr, F.

Arie, A.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Bai, Y.-H.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Bass, M.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
[Crossref]

Bloch, N. V.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Breunig, I.

Buse, K.

Carbajo, S.

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Chai, W. Q.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Chen, P.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chen, X.

Chen, Y.

Cirmi, G.

Cui, G.-X.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Ding, Y. J. J.

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Feng, Y.-J.

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

Fernelius, N.

Franken, P. A.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
[Crossref]

Gallot, G.

Geng, D.-Q.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Gong, Y.

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hebling, J.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Hoffmann, M. C.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hu, W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Huang, W. R.

Huo, J.

Jin, B.-B.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Juwiler, I.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Kärtner, F. X.

Kiessling, J.

Koynov, K.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Krolikowski, W.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Li, C.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Li, J.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Li, Z. Y.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Liang, L.-J.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lin, X.-W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y.

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

Lu, Y.-N.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y.-Q.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

G.-H. Shao, X.-S. Song, F. Xu, and Y.-Q. Lu, “Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.,” Opt. Express 20(17), 19343–19348 (2012).
[Crossref] [PubMed]

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Ma, D. L.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Masson, J.-B.

Ming, N.

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

Ming, N.-B.

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Mücke, O. D.

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nelson, K. A.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Osgood, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Preu, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Qian, H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Qiu, X.-B.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Ravi, K.

Ren, M. L.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Shao, G.-H.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

G.-H. Shao, X.-S. Song, F. Xu, and Y.-Q. Lu, “Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.,” Opt. Express 20(17), 19343–19348 (2012).
[Crossref] [PubMed]

Shapira, A.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Shemer, K.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Sheng, Y.

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

Shi, J.

Shi, W.

Shiloh, R.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Song, X.-S.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vodopyanov, K.

Wan, Z.-L.

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Wang, L.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Wang, Q.

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Ward, J. F.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
[Crossref]

Weinreich, G.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
[Crossref]

Wu, D.

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Wu, P.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wu, S. T.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Wu, X.

Xi, Y.-X.

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Xia, Y.

Xu, F.

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Zhang, B.

Zheng, Z.-G.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Zhou, C.

Zhou, Y.

Zhu, S.

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

Zhu, Y.

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003).
[Crossref] [PubMed]

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

AIP Adv. (1)

G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, and Y.-Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
[Crossref]

Appl. Phys. Lett. (4)

Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N.-B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Y. Sheng, D. L. Ma, M. L. Ren, W. Q. Chai, Z. Y. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[Crossref]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

J. Appl. Phys. (3)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Light Sci. Appl. (1)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9(11), 446–448 (1962).
[Crossref]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Science (1)

Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic crystal,” Science 284(5421), 1822–1824 (1999).
[Crossref] [PubMed]

Other (1)

X. C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Values of no (a), ne (b) in the temperature interval of 10°C and values of birefringence (c) in the interval of 20°C over frequencies ranging from 0.5 THz to 1.5 THz.
Fig. 2
Fig. 2 Absolute value of the deviation between measured no (a) and ne (b) and the fitted values using extended Cauchy equations for 131 × 11 = 1441 data points.
Fig. 3
Fig. 3 Determination of suitable frequencies for QWP and HWP. (a) K1, K2, K3, and K4 represent the corresponding frequencies of QWP and HWP at 30°C and 130°C based on the extended Cauchy equations. The polarization states of (b) the incident wave, (c) 30°C at 0.84 THz, (d) 30°C at 0.92 THz, (e) 130°C at 0.89 THz, and (f) 130°C at 0.98 THz, respectively.
Fig. 4
Fig. 4 Transmission efficiencies for true zero-order QWPs and HWPs at different temperatures. (a) QWP transmission efficiency in the direction of ordinary waves. (b) QWP transmission efficiency in the direction of extraordinary waves. (c) True zero-order QWP transmission ratio ζ. (d) HWP transmission efficiency in the direction of ordinary waves. (e) HWP transmission efficiency in the direction of extraordinary waves. (f) True zero-order HWP transmission ratio ζ.
Fig. 5
Fig. 5 Phase retardation versus temperature and frequency of achromatic QWP (a) and HWP (b). Inserting plates in the figure indicate the dephasing constraints of 3% for QWP (a) and 5% for HWP (b), respectively.

Tables (4)

Tables Icon

Table 1 Coefficients Ae,o, Be,o, and Ce,o of no and ne and deviation between measured and fitted results

Tables Icon

Table 2 Calculated frequencies for QWP and HWP at 30°C and 130°C

Tables Icon

Table 3 Calculated thicknesses and orientations for four wafer stacking QWP and HWP

Tables Icon

Table 4 Comparison of achromatic WPs between previous designs and ours.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n e,o ( υ ) A e,o + B e,o υ 2 + C e,o υ 4 ,
n e,o ( υ,T )= A 1 e,o + A 2e,o T+ B e,o ¯ υ 2 + C e,o ¯ υ 4 ,
{ n o ( υ,T )=6.67+2.13× 10 3 T+9.29× 10 2 υ 2 +15.02× 10 3 υ 4 n e ( υ,T )=5.10+3.17× 10 3 T23.44× 10 4 υ 2 +1.74× 10 2 υ 4 ,

Metrics