Abstract

We present terahertz (THz) wave modulation by using free-standing ZnO nanowire (NW) network films. The ZnO NW films were virtually transparent against THz waves without UV illumination. Conversely, the THz waves were attenuated under very low-intensity UV illumination, making the ZnO NW film a promising platform for low-loss, low-power and all-optical THz modulators. The complex dielectric constants measurements reveal that the UV laser induces an enhancement in the ac conductivity while leaving the real part of the dielectric constant unchanged. The relatively slow time response implies that the UV-induced modulation is closely linked to the surface trap states. The THz attenuations showed clear saturation behavior with respect to the UV intensity, from which we extracted the ZnO NW surface trap density.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet light-induced terahertz modulation of an indium oxide film

Hongyu Ji, Bo Zhang, Wei Wang, Longfeng Lv, and Jingling Shen
Opt. Express 26(6) 7204-7210 (2018)

Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector

Yang Liu, Xianghui Zhang, Jun Su, Haixia Li, Qi Zhang, and Yihua Gao
Opt. Express 22(24) 30148-30155 (2014)

Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface

Yue Wang, Zijian Cui, Dongying Zhu, Xianbin Zhang, and Li Qian
Opt. Express 26(12) 15343-15352 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  2. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  4. Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).
  5. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  6. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
    [Crossref] [PubMed]
  7. S. Nishizawa, K. Sakai, M. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz Time-Domain Spectroscopy,” in Terahertz Optoelectronics, K. Sakai, ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 203–270.
  8. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  9. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  10. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  11. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  12. J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
    [Crossref] [PubMed]
  13. J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
    [Crossref]
  14. J. E. Sanchez, R. Díaz de León, F. Mendoza-Santoyo, G. González, M. José-Yacaman, A. Ponce, and F. J. González, “Resonance properties of Ag-ZnO nanostructures at terahertz frequencies,” Opt. Express 23(19), 25111–25117 (2015).
    [Crossref] [PubMed]
  15. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
    [Crossref] [PubMed]
  16. Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
    [Crossref] [PubMed]
  17. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
    [Crossref] [PubMed]
  18. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
    [Crossref] [PubMed]
  19. J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
    [Crossref] [PubMed]
  20. J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
    [Crossref] [PubMed]
  21. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
    [Crossref] [PubMed]
  22. X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
    [Crossref]
  23. M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
    [Crossref]
  24. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
    [Crossref]
  25. J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
    [Crossref] [PubMed]
  26. J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
    [Crossref] [PubMed]
  27. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
    [Crossref] [PubMed]
  28. M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
    [Crossref]
  29. Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
    [Crossref] [PubMed]
  30. M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
    [Crossref] [PubMed]
  31. Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
    [Crossref]
  32. A. Soudi, C. H. Hsu, and Y. Gu, “Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires,” Nano Lett. 12(10), 5111–5116 (2012).
    [Crossref] [PubMed]
  33. C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
    [Crossref] [PubMed]
  34. Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
    [Crossref] [PubMed]

2016 (2)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

2013 (5)

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

2012 (3)

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

A. Soudi, C. H. Hsu, and Y. Gu, “Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires,” Nano Lett. 12(10), 5111–5116 (2012).
[Crossref] [PubMed]

2011 (1)

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

2010 (1)

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

2009 (4)

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

2007 (7)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

2006 (3)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

2003 (2)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

2000 (1)

Ah Qune, L. F. N.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Ahn, Y.

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[Crossref]

Akalin, T.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Andryieuski, A.

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Arikawa, T.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Bando, Y.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Bank, S. R.

Bao, Q.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Baughman, R. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Baxter, J. B.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Cao, Y.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Castagna, M. E.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Catania, G.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Chen, B.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Chen, H.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Chen, Z.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Choi, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Condorelli, G.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Cui, Z.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Deng, Y.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Díaz de León, R.

Dierre, B.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Ding, H.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Fang, X.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Feng, S.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Fung, M. K.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Gan, S.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Gautam, U. K.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Geng, Z.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Golberg, D.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

González, F. J.

González, G.

Gossard, A. C.

Gu, Y.

A. Soudi, C. H. Hsu, and Y. Gu, “Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires,” Nano Lett. 12(10), 5111–5116 (2012).
[Crossref] [PubMed]

Han, S. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Hatanaka, T.

Hauge, R. H.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Hong, J. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

Hsu, C. H.

A. Soudi, C. H. Hsu, and Y. Gu, “Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires,” Nano Lett. 12(10), 5111–5116 (2012).
[Crossref] [PubMed]

Huan, C. H. A.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Inoue, H.

Ito, H.

Jang, E. Y.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

José-Yacaman, M.

Kawase, K.

Kawayama, I.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Kim, D. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Kim, D.-S.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kim, H. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Kim, Y. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Koh, K. H.

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

Koide, Y.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Kono, J.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Kuang, Q.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Kyoung, J.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lao, C. S.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Lavrinenko, A. V.

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Lee, K. M.

Lee, S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

Lee, S. T.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Lepró, X.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Li, J.-S.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Li, M.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Liao, M.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Lima, M. D.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Liu, B.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Liu, J.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

Liu, W.-W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Lu, W.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Luo, J.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Mao, Q.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Mazzillo, M.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Mendoza-Santoyo, F.

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nakamura, K.

Ogawa, Y.

Padilla, W. J.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, D. J.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

Park, H.-R.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Park, J.

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[Crossref]

Park, J. K.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Park, J. Y.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

Park, J.-Y.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Park, K. H.

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

Park, M.-C.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz conductivity of reduced graphene oxide films,” Opt. Express 21(6), 7633–7640 (2013).
[Crossref] [PubMed]

Park, W. K.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Pint, C. L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Polla, D. L.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Ponce, A.

Rahm, M.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Raineri, V.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Ren, L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Robles, R. O.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Roccaforte, F.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Sanchez, J. E.

Sanderson, M.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Schmuttenmaer, C. A.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

Sciuto, A.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Sekiguchi, T.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Shi, Z.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Son, B. H.

Sood, A. K.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Soudi, A.

A. Soudi, C. H. Hsu, and Y. Gu, “Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires,” Nano Lett. 12(10), 5111–5116 (2012).
[Crossref] [PubMed]

Su, W.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Sui, M.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Sum, T. C.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Sun, W.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Takahashi, H.

Takeya, K.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Taniuchi, T.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Tonouchi, M.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Wang, B.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Wang, X.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Wang, Z. L.

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

Watanabe, Y.

Wen, Q.-Y.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Wong, F. L.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Wu, T.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Wu, Y.

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Xie, Z.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Xing, G.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Yang, Q.-H.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Ye, J.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Yim, J. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Zhai, T.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Zhang, H.-W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Zhang, X.

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Zhang, Y.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Zhi, C.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Zide, J. M. O.

Adv. Mater. (1)

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Appl. Phys. Lett. (3)

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly Efficient Low Reverse Biased 4H-SiC Schottky Photodiodes for UV-Light Detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

C. S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (1)

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

J. Phys. Chem. B (1)

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric Constant Engineering of Single-Walled Carbon Nanotube Films for Metamaterials and Plasmonic Devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Nano Lett. (4)

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

A. Soudi, C. H. Hsu, and Y. Gu, “Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires,” Nano Lett. 12(10), 5111–5116 (2012).
[Crossref] [PubMed]

Nanoscale (1)

Q. Chen, H. Ding, Y. Wu, M. Sui, W. Lu, B. Wang, W. Su, Z. Cui, and L. Chen, “Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors,” Nanoscale 5(10), 4162–4165 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

J. Liu, J. Park, K. H. Park, Y. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Enhanced photoconduction of free-standing ZnO nanowire films by L-lysine treatment,” Nanotechnology 21(48), 485504 (2010).
[Crossref] [PubMed]

J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires,” Nanotechnology 20(44), 445203 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Nat. Photonics (4)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

M. Li, G. Xing, L. F. N. Ah Qune, G. Xing, T. Wu, C. H. A. Huan, X. Zhang, and T. C. Sum, “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Phys. Chem. Chem. Phys. 14(9), 3075–3082 (2012).
[Crossref] [PubMed]

Sci. Rep. (3)

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6, 22899 (2016).
[Crossref] [PubMed]

Other (2)

S. Nishizawa, K. Sakai, M. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz Time-Domain Spectroscopy,” in Terahertz Optoelectronics, K. Sakai, ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 203–270.

Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep.3, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Photograph of a free-standing ZnO NW network film. (b) Scanning electron microscopy (SEM) image of a ZnO NW network film. (c) Schematic of THz time-domain spectroscopy set-up.
Fig. 2
Fig. 2 (a) Time trace of THz transmission through a 15-μm-thick ZnO NW film. (b) THz transmittance spectra with (red) and without (blue) UV laser illumination of the ZnO NW film. (c) Modulation depth induced by the UV laser.
Fig. 3
Fig. 3 (a) Frequency-dependent real part of the refractive indices for a ZnO NW film with (red) and without (blue) UV laser illumination. (b) Conductivity with (red) and without (blue) UV laser illumination.
Fig. 4
Fig. 4 (a) THz absorptance as a function of time with UV laser turned on/off repeatedly (black line). (b) THz absorptance as a function of time. The UV laser is turned on at t = 0 s. Solid line is fit to the data (Inset) Schematic of trapping mechanisms of the photogenerated hole carriers under UV illumination. (c) THz absorptance as a function of time with the UV laser turned off at t = 0 s. Solid line is fit to the data (Inset) Schematic of recovery of surface trap states when the UV laser is turned off.
Fig. 5
Fig. 5 (a) The dependence of THz absorptance on UV intensity. (Inset) Intensity-dependent response function, η (black boxes). The red solid line is fit to the data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η( I UV )= 1 1+ ( I UV / I sat ) p

Metrics