Abstract

We report on the enhanced random lasing from an organic gain medium in a planar waveguide, with the assistance of bristled Ag/TiO2 composite nanowires. Tris(8-hydroxyquinolinato)aluminum (Alq3) and 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) are used as donor-acceptor lasing dyes. Comparing to the gain medium with silver nanowires, the lower lasing threshold is achieved utilizing bristled Ag/TiO2 nanowires, and the threshold is reduced by 3.7 times than that of the neat gain medium. It is attributed to the broader localized surface plasmon resonance spectrum of Ag/TiO2 nanowires which could sufficiently overlap with both absorption and emission spectra of donor-acceptor lasing dyes, the stronger localized electric field enhancement effect and scattering effect. In addition, the unique plasmonic waveguide effect could also contribute to the enhanced lasing and lead to the lower lasing threshold. This method is expected to be a potential metal-modified technology for improving the lasing performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods

Shuya Ning, Zhaoxin Wu, Hua Dong, Fang Yuan, Jun Xi, Lin Ma, Bo Jiao, and Xun Hou
Opt. Lett. 40(6) 990-993 (2015)

Enhanced lasing from organic gain medium by Au nanocube@SiO2 core-shell nanoparticles with optimal size

Shuya Ning, Naming Zhang, Hua Dong, Xun Hou, Fanghui Zhang, and Zhaoxin Wu
Opt. Mater. Express 8(10) 3014-3022 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
    [Crossref] [PubMed]
  2. J. R. Lakowicz, “Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [Crossref] [PubMed]
  3. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
    [Crossref]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  5. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  6. X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).
  7. X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).
  8. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]
  9. E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102, 133110 (2013).
  10. E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).
  11. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
    [Crossref] [PubMed]
  12. S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
    [Crossref]
  13. W. Lu, H. You, J. Fang, and D. Ma, “Improvement of amplified spontaneous emission performance by doping tris(8-hydroxyquinoline) aluminum (Alq3) in dye-doped polymer thin films,” Appl. Opt. 46(12), 2320–2324 (2007).
    [Crossref] [PubMed]
  14. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
    [Crossref] [PubMed]
  15. X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
    [Crossref]
  16. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  17. R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
    [Crossref]
  18. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
    [Crossref] [PubMed]
  19. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).
  20. J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
    [Crossref] [PubMed]
  21. B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40(10), 1067–1076 (2007).
    [Crossref] [PubMed]
  22. C. Jia, H. Chen, and P. Yang, “Selective growth of TiO2 beads on Ag nanowires and their photocatalytic performance,” CrystEngComm 17(26), 4895–4902 (2015).
    [Crossref]
  23. P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
    [Crossref]
  24. H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
    [Crossref] [PubMed]
  25. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
    [Crossref] [PubMed]

2015 (1)

C. Jia, H. Chen, and P. Yang, “Selective growth of TiO2 beads on Ag nanowires and their photocatalytic performance,” CrystEngComm 17(26), 4895–4902 (2015).
[Crossref]

2014 (1)

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

2013 (3)

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102, 133110 (2013).

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

2012 (1)

P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

2011 (3)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

2009 (1)

X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

2008 (2)

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).

2007 (3)

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

W. Lu, H. You, J. Fang, and D. Ma, “Improvement of amplified spontaneous emission performance by doping tris(8-hydroxyquinoline) aluminum (Alq3) in dye-doped polymer thin films,” Appl. Opt. 46(12), 2320–2324 (2007).
[Crossref] [PubMed]

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40(10), 1067–1076 (2007).
[Crossref] [PubMed]

2006 (2)

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

2005 (4)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

2000 (1)

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

Aslan, K.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Chen, H.

C. Jia, H. Chen, and P. Yang, “Selective growth of TiO2 beads on Ag nanowires and their photocatalytic performance,” CrystEngComm 17(26), 4895–4902 (2015).
[Crossref]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

Dong, H.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Du, J.

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Elezzabi, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Fang, J.

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Flehr, R.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102, 133110 (2013).

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

Fujita, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).

Geddes, C. D.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gryczynski, I.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

Han, B.

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Heydari, E.

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102, 133110 (2013).

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

Hou, X.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Huang, Y.

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Jia, C.

C. Jia, H. Chen, and P. Yang, “Selective growth of TiO2 beads on Ag nanowires and their photocatalytic performance,” CrystEngComm 17(26), 4895–4902 (2015).
[Crossref]

Jiang, T.

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Jiao, B.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Kim, J.

P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Kim, S.

P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

Liu, H.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Liu, Z.

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Liz-Marzán, L. M.

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

Lu, W.

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

Ma, D.

Ma, L.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).

Moriguchi, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).

Ning, S.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Pastoriza-Santos, I.

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Ramasamy, P.

P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Seo, D.

P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

Stumpe, J.

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102, 133110 (2013).

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Sun, Y.

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40(10), 1067–1076 (2007).
[Crossref] [PubMed]

Tanaka, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

Wang, L.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wang, W.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wiley, B.

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40(10), 1067–1076 (2007).
[Crossref] [PubMed]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Wu, Z.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Xia, Y.

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40(10), 1067–1076 (2007).
[Crossref] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Xu, H.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Yan, J.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Yang, H.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Yang, P.

C. Jia, H. Chen, and P. Yang, “Selective growth of TiO2 beads on Ag nanowires and their photocatalytic performance,” CrystEngComm 17(26), 4895–4902 (2015).
[Crossref]

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

You, H.

Yu, S.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Yu, Y.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Yuan, F.

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Zhang, L.

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zong, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).

Acc. Chem. Res. (1)

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res. 40(10), 1067–1076 (2007).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers,” Adv. Optical Mater. 1(8), 573–580 (2013).
[Crossref]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102, 133110 (2013).

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

X. Meng, K. Fujita, Y. Zong, and S. Murai, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 1201112 (2008).

CrystEngComm (1)

C. Jia, H. Chen, and P. Yang, “Selective growth of TiO2 beads on Ag nanowires and their photocatalytic performance,” CrystEngComm 17(26), 4895–4902 (2015).
[Crossref]

Curr. Opin. Biotechnol. (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: An emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. Mater. Chem. (1)

P. Ramasamy, D. Seo, S. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver nanowires,” J. Mater. Chem. 22(23), 11651–11657 (2012).
[Crossref]

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

J. Phys. Chem. C (1)

E. Heydari, I. Pastoriza-Santos, R. Flehr, L. M. Liz-Marzán, and J. Stumpe, “Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites,” J. Phys. Chem. C 117(32), 16577–16583 (2013).

Langmuir (1)

J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route,” Langmuir 22(3), 1307–1312 (2006).
[Crossref] [PubMed]

Nano Lett. (5)

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[Crossref] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

H. Yang, S. Yu, J. Yan, and L. Zhang, “Random Lasing Action from Randomly Assembled ZnS Nanosheets,” Nanoscale Res. Lett. 5(5), 809–812 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Org. Electron. (1)

S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, “Enhancement of amplified spontaneous emission in organic gain media by the metallic film,” Org. Electron. 15(9), 2052–2058 (2014).
[Crossref]

Phy. Rev. Lett. (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, and M. Rogers, “Silver Nanowires as Surface Plasmon Resonators,” Phy. Rev. Lett. 95(25), 257403 (2005).

Phys. Chem. A (1)

X. Meng, K. Fujita, S. Murai, and T. Matoba, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM and (b) TEM image of Ag/TiO2 nanowires.
Fig. 2
Fig. 2 The structure of the device that gain medium with Ag/TiO2 nanowires.
Fig. 3
Fig. 3 The LSPR spectra of Ag/TiO2 nanowires (NWs) and Ag NWs with the absorption and emission of Alq3 and DCJTB.
Fig. 4
Fig. 4 Emission spectra of the device glass/PS: Alq3: DCJTB. The inset shows the dependence of the intensity and FWHM of the emission spectrum on the pump energy intensity.
Fig. 5
Fig. 5 Emission spectra of the device with (a) Ag/TiO2 nanowires, at the concertration of 2.97 × 10−4 g/cm3, (c) Ag nanowires, at the concertration is 3.44 × 10−4 g/cm3, (b) and (d) the lasing intensity and FWHM of the emission spectra on the pump energy corresponding to (a) and (c). (e) Dependence of lasing threshold on concertration of Ag/TiO2 and Ag nanowires.
Fig. 6
Fig. 6 Distribution of electric field at the wavelengths of (a), (c) 355 nm, (b), (d) 630 nm near the Ag nanowire and Ag/TiO2 nanowire.

Metrics