Abstract

Fluoride phosphate (FP) glass fibres have been developed for radiation dosimetry based on the mechanism of optically stimulated luminescence (OSL). Doping with Tb3+ ions improved the materials sensitivity; for samples melted in oxidising conditions, OSL intensity was increased from 8.8 × 105 cnts/g/Gy for undoped glass to 812.3 × 105 cnts/g/Gy for Tb3+-doped glass. The radiation sensor performance of Tb3+-doped glass fibres under both beta and X-ray irradiation demonstrated the capability of the fibres for radiation dosimetry applications.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
    [Crossref]
  2. A. M. C. Santos, M. Mohammadi, and S. Afshar, “Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system,” Radiat. Meas. 70, 52–58 (2014).
    [Crossref]
  3. J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
    [Crossref]
  4. G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
    [Crossref]
  5. J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
    [Crossref]
  6. M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
    [Crossref] [PubMed]
  7. J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
    [Crossref]
  8. C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
    [Crossref]
  9. C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
    [Crossref]
  10. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
    [Crossref]
  11. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2, 62–70 (2012).
    [Crossref]
  12. D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
    [Crossref]
  13. S. Huang and M. Gu, “Enhanced luminescent properties of Tb3+ ions in transparent glass ceramics containing BaGdF5 nanocrystals,” J. Non-Cryst. Solids 358, 77–80 (2012).
    [Crossref]
  14. Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
    [Crossref]
  15. Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
    [Crossref]
  16. G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
    [Crossref]
  17. W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
    [Crossref]
  18. W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).
  19. S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
    [Crossref]
  20. I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
    [Crossref]
  21. W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
    [Crossref]
  22. H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208, 205–216 (1996).
    [Crossref]
  23. H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15, 7–25 (2000).
    [Crossref]
  24. C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
    [Crossref]
  25. M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6, 166–180 (2016).
    [Crossref]
  26. Schott Glass Company, “Optical Glass Data Sheets” http://www.schott.com/advanced_optics/english/download/ .
  27. J. Hecht, Understanding Fiber Optics (Pearson Prentice Hall, 2006).
  28. H. Ebendorff-Heidepriem and D. Ehrt, “Relationships between glass structure and spectroscopic properties of Eu3+ and Tb3+ doped glasses,” Ber. Bunsenges. Phys. Chem. 100, 1621–1624 (1996).
    [Crossref]
  29. D. Ehrt, “Redox behavior of polyvalent ions in the ppm range,” J. Non-Cryst. Solids 196, 304–308 (1996).
    [Crossref]
  30. N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
    [Crossref]
  31. C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3, 960–967 (2013).
    [Crossref]
  32. J. R. Prescott, P. J. Fox, R. A. Akber, and H. E. Jensen, “Thermoluminescence emission spectrometer,” Appl. Opt. 27, 3496–3502 (1988).
    [Crossref] [PubMed]
  33. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University, 1985).
    [Crossref]
  34. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997).
    [Crossref]
  35. C. Furetta and P. Weng, Operational Thermoluminescence Dosimetry (World Scientific, 1998).
    [Crossref]
  36. H. Ebendorff-Heidepriem and D. Ehrt, “UV radiation effects in fluoride phosphate glasses,” J. Non-Cryst. Solids 196, 113–117 (1996).
    [Crossref]
  37. X. Zou and H. Toratani, “Radiation resistance of fluorophosphate glasses for high performance optical fiber in the ultraviolet region,” J. Appl. Phys. 81, 3354–3362 (1997).
    [Crossref]

2016 (3)

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6, 166–180 (2016).
[Crossref]

2015 (3)

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

2014 (1)

A. M. C. Santos, M. Mohammadi, and S. Afshar, “Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system,” Radiat. Meas. 70, 52–58 (2014).
[Crossref]

2013 (3)

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3, 960–967 (2013).
[Crossref]

2012 (3)

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2, 62–70 (2012).
[Crossref]

S. Huang and M. Gu, “Enhanced luminescent properties of Tb3+ ions in transparent glass ceramics containing BaGdF5 nanocrystals,” J. Non-Cryst. Solids 358, 77–80 (2012).
[Crossref]

2011 (3)

D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
[Crossref]

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[Crossref]

2010 (1)

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[Crossref]

2006 (1)

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

2004 (3)

J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
[Crossref]

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

2002 (3)

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
[Crossref]

G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
[Crossref]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

2000 (1)

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15, 7–25 (2000).
[Crossref]

1997 (1)

X. Zou and H. Toratani, “Radiation resistance of fluorophosphate glasses for high performance optical fiber in the ultraviolet region,” J. Appl. Phys. 81, 3354–3362 (1997).
[Crossref]

1996 (5)

H. Ebendorff-Heidepriem and D. Ehrt, “UV radiation effects in fluoride phosphate glasses,” J. Non-Cryst. Solids 196, 113–117 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208, 205–216 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Relationships between glass structure and spectroscopic properties of Eu3+ and Tb3+ doped glasses,” Ber. Bunsenges. Phys. Chem. 100, 1621–1624 (1996).
[Crossref]

D. Ehrt, “Redox behavior of polyvalent ions in the ppm range,” J. Non-Cryst. Solids 196, 304–308 (1996).
[Crossref]

N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[Crossref]

1988 (1)

Adam, J. L.

N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[Crossref]

Afshar, S.

A. M. C. Santos, M. Mohammadi, and S. Afshar, “Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system,” Radiat. Meas. 70, 52–58 (2014).
[Crossref]

Akber, R. A.

Akselrod, M. S.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
[Crossref]

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
[Crossref]

Altemus, R.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

Andersen, C. E.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[Crossref]

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Aznar, M. C.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Back, S. A. J.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Beitlerova, A.

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Bøtter-Jensen, L.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Bouvet, J. P.

G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
[Crossref]

Brambilla, N.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Buchak, P.

Cantone, M. C.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Chen, D.

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Chen, M. J.

Chen, R.

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997).
[Crossref]

Chewpraditkul, W.

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Chiodini, A.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Chiodini, N.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Crowdy, D. G.

Damkjær, S. M. S.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[Crossref]

Ding, N.

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

Dowler, A.

Duhamel-Henry, N.

N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[Crossref]

Dujardin, C.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Ebendorff-Heidepriem, H.

C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6, 166–180 (2016).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3, 960–967 (2013).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2, 62–70 (2012).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15, 7–25 (2000).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208, 205–216 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Relationships between glass structure and spectroscopic properties of Eu3+ and Tb3+ doped glasses,” Ber. Bunsenges. Phys. Chem. 100, 1621–1624 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “UV radiation effects in fluoride phosphate glasses,” J. Non-Cryst. Solids 196, 113–117 (1996).
[Crossref]

Edmund, J. M.

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[Crossref]

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

Ehrt, D.

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15, 7–25 (2000).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208, 205–216 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “UV radiation effects in fluoride phosphate glasses,” J. Non-Cryst. Solids 196, 113–117 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Relationships between glass structure and spectroscopic properties of Eu3+ and Tb3+ doped glasses,” Ber. Bunsenges. Phys. Chem. 100, 1621–1624 (1996).
[Crossref]

D. Ehrt, “Redox behavior of polyvalent ions in the ppm range,” J. Non-Cryst. Solids 196, 304–308 (1996).
[Crossref]

Falkenstein, P. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

Fang, Y.

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

Fasoli, D.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Fasoli, M.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Ferdinand, P.

G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
[Crossref]

Foo, H. T.

Fox, P. J.

Furetta, C.

C. Furetta and P. Weng, Operational Thermoluminescence Dosimetry (World Scientific, 1998).
[Crossref]

Greilich, S.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

Gu, M.

S. Huang and M. Gu, “Enhanced luminescent properties of Tb3+ ions in transparent glass ceramics containing BaGdF5 nanocrystals,” J. Non-Cryst. Solids 358, 77–80 (2012).
[Crossref]

He, D.

D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
[Crossref]

Hecht, J.

J. Hecht, Understanding Fiber Optics (Pearson Prentice Hall, 2006).

Holmstrom, S.

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
[Crossref]

Hu, L.

D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
[Crossref]

Huang, S.

S. Huang and M. Gu, “Enhanced luminescent properties of Tb3+ ions in transparent glass ceramics containing BaGdF5 nanocrystals,” J. Non-Cryst. Solids 358, 77–80 (2012).
[Crossref]

Huston, A. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

Jacquier, B.

N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[Crossref]

Jensen, H. E.

Jiang, S.

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

Justus, B. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

Kalnins, C. A. G.

C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3, 960–967 (2013).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2, 62–70 (2012).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[Crossref]

Keffer, M.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Kertzscher, G.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

Kjær-Kristoffersen, F.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Li, J.

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

Li, S.

D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
[Crossref]

Li, X.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Linarès, C.

N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[Crossref]

Liu, L.

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

Liu, S.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Lv, J.

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

Magne, S.

G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
[Crossref]

Marckmann, C. J.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

Martino, N. D.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Martnini, S. L. A.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Mattia, C. D.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Mattsson, S.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

McKeever, S. W. S.

J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
[Crossref]

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
[Crossref]

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University, 1985).
[Crossref]

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997).
[Crossref]

Medin, J.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Miller, R. W.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

Mohammadi, M.

A. M. C. Santos, M. Mohammadi, and S. Afshar, “Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system,” Radiat. Meas. 70, 52–58 (2014).
[Crossref]

Monro, T. M.

C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3, 960–967 (2013).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2, 62–70 (2012).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[Crossref]

Moretti, F.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Moretti, M.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Nikl, G.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Nikl, M.

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Ning, H.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

Polf, J. C.

J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
[Crossref]

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
[Crossref]

Prescott, J. R.

Prusa, P.

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Ranchoux, G.

G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
[Crossref]

Santos, A. M. C.

A. M. C. Santos, M. Mohammadi, and S. Afshar, “Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system,” Radiat. Meas. 70, 52–58 (2014).
[Crossref]

Shen, Y.

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Sheng, Q.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Solovieva, M.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Spinolo, F.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Spooner, N. A.

C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3, 960–967 (2013).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2, 62–70 (2012).
[Crossref]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[Crossref]

Stokes, Y. M.

Tang, C.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Toratani, H.

X. Zou and H. Toratani, “Radiation resistance of fluorophosphate glasses for high performance optical fiber in the ultraviolet region,” J. Appl. Phys. 81, 3354–3362 (1997).
[Crossref]

Vedda, A.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Vedda, G.

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Veronese, I.

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Wanarak, C.

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Weng, P.

C. Furetta and P. Weng, Operational Thermoluminescence Dosimetry (World Scientific, 1998).
[Crossref]

Xu, W.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Yao, Y.

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

Yu, B.

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

Yu, C.

D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
[Crossref]

Yukihara, E. G.

J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
[Crossref]

Zhang, Y.

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

Zhao, G.

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

Zheng, S.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Zheng, T.

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

Zou, X.

X. Zou and H. Toratani, “Radiation resistance of fluorophosphate glasses for high performance optical fiber in the ultraviolet region,” J. Appl. Phys. 81, 3354–3362 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Vedda, A. Chiodini, N. D. Martino, D. Fasoli, M. Keffer, S. L. A. Martnini, M. Moretti, F. Spinolo, G. Nikl, M. Solovieva, and N. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett. 85, 6356–6358 (2004).
[Crossref]

Ber. Bunsenges. Phys. Chem. (1)

H. Ebendorff-Heidepriem and D. Ehrt, “Relationships between glass structure and spectroscopic properties of Eu3+ and Tb3+ doped glasses,” Ber. Bunsenges. Phys. Chem. 100, 1621–1624 (1996).
[Crossref]

J. Alloy. Compd. (1)

D. He, C. Yu, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloy. Compd. 509, 1906–1909 (2011).
[Crossref]

J. Am. Ceram. Soc. (2)

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride–phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc. 94, 474–477 (2011).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Surface analysis and treatment of extruded fluoride phosphate glass preforms for optical fibre fabrication,” J. Am. Ceram. Soc. 99, 1874–1877 (2016).
[Crossref]

J. Appl. Phys. (1)

X. Zou and H. Toratani, “Radiation resistance of fluorophosphate glasses for high performance optical fiber in the ultraviolet region,” J. Appl. Phys. 81, 3354–3362 (1997).
[Crossref]

J. Non-Cryst. Solids (5)

H. Ebendorff-Heidepriem and D. Ehrt, “UV radiation effects in fluoride phosphate glasses,” J. Non-Cryst. Solids 196, 113–117 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208, 205–216 (1996).
[Crossref]

D. Ehrt, “Redox behavior of polyvalent ions in the ppm range,” J. Non-Cryst. Solids 196, 304–308 (1996).
[Crossref]

S. Huang and M. Gu, “Enhanced luminescent properties of Tb3+ ions in transparent glass ceramics containing BaGdF5 nanocrystals,” J. Non-Cryst. Solids 358, 77–80 (2012).
[Crossref]

Y. Zhang, J. Lv, N. Ding, S. Jiang, T. Zheng, and J. Li, “Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration,” J. Non-Cryst. Solids 423, 30–34 (2015).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

W. Chewpraditkul, Y. Shen, D. Chen, M. Nikl, and A. Beitlerova, “Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation,” J. Optoelectron. Adv. Mater. 15, 94–98 (2013).

J. Phys. Chem. C (1)

I. Veronese, C. D. Mattia, M. Fasoli, N. Chiodini, M. C. Cantone, F. Moretti, C. Dujardin, and A. Vedda, “Role of optical fiber drawing in radioluminescence hysteresis of Yb-doped silica,” J. Phys. Chem. C 119, 15572–15578 (2015).
[Crossref]

Mater. Lett. (1)

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu, Q. Sheng, and D. Chen, “Photoluminescence and radioluminescence properties of Yb2+-doped silica glass,” Mater. Lett. 144, 43–45 (2015).
[Crossref]

Opt. Mater. (5)

W. Chewpraditkul, Y. Shen, D. Chen, A. Beitlerova, and M. Nikl, “Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation,” Opt. Mater. 35, 426–430 (2013).
[Crossref]

N. Duhamel-Henry, J. L. Adam, B. Jacquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[Crossref]

Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, “Optical properties of Ce3+ doped fluorophosphates scintillation glasses,” Opt. Mater. 51, 94–97 (2016).
[Crossref]

W. Chewpraditkul, Y. Shen, D. Chen, B. Yu, P. Prusa, M. Nikl, A. Beitlerova, and C. Wanarak, “Luminescence and scintillation of Ce3+-doped high silica glass,” Opt. Mater. 34, 1762–1766 (2012).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15, 7–25 (2000).
[Crossref]

Opt. Mater. Express (3)

Phys. Med. Biol. (1)

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. A. J. Back, S. Mattsson, F. Kjær-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol. 49, 1655–1669 (2004).
[Crossref] [PubMed]

Radiat. Meas. (4)

C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas. 45, 653–657 (2010).
[Crossref]

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas. 46, 1090–1098 (2011).
[Crossref]

A. M. C. Santos, M. Mohammadi, and S. Afshar, “Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system,” Radiat. Meas. 70, 52–58 (2014).
[Crossref]

J. C. Polf, E. G. Yukihara, M. S. Akselrod, and S. W. S. McKeever, “Real-time luminescence from Al2O3:C fiber dosimeters,” Radiat. Meas. 38, 227–240 (2004).
[Crossref]

Radiat. Prot. Dosim. (4)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically stimulated luminescent glass optical fibre dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[Crossref]

J. C. Polf, S. W. S. McKeever, M. S. Akselrod, and S. Holmstrom, “A real-time, fibre optic dosimetry system using Al2O3:C fibres,” Radiat. Prot. Dosim. 100, 301–304 (2002).
[Crossref]

G. Ranchoux, S. Magne, J. P. Bouvet, and P. Ferdinand, “Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3:C,” Radiat. Prot. Dosim. 100, 255–260 (2002).
[Crossref]

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C,” Radiat. Prot. Dosim. 119, 368 (2006).
[Crossref]

Other (5)

Schott Glass Company, “Optical Glass Data Sheets” http://www.schott.com/advanced_optics/english/download/ .

J. Hecht, Understanding Fiber Optics (Pearson Prentice Hall, 2006).

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University, 1985).
[Crossref]

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997).
[Crossref]

C. Furetta and P. Weng, Operational Thermoluminescence Dosimetry (World Scientific, 1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) absorption spectra of fluoride phosphate glass samples: undoped (black) and Tb3+-doped (red), melted under oxidising (solid) and reducing (dashed) atmospheres. (b) loss spectra of undoped and Tb3+-doped fluoride phosphate optical fibres. Optical fibres were fabricated from glasses melted in both oxidising and reducing atmospheric conditions. F1: undoped-ox, F3: terbium-red, F4: terbium-ox. F2 was in the form of large-diameter canes, hence loss measurements were not performed.

Fig. 2
Fig. 2

(a) emission spectra of sample terbium-red. Excitation at 355 nm with frequency tripled YAG laser. Emission peaks are observed at suitable wavelengths for use with Schott BG39 and Hoya U340 filters. (b) Transmission spectra of the 7mm thick Hoya U340 and the 3 mm thick Schott BG39 coloured glass filters used for OSL measurements.

Fig. 3
Fig. 3

(a) TL emission of undoped and Tb3+-doped FP glass. (b) TL emission spectrum and intensity contour plot of sample terbium-red. The emission peaks observed previously are clearly visible in the 400 – 600 nm region.

Fig. 4
Fig. 4

Plot of the OSL data provided in Table 1, shown for both 275 – 400 and 350 – 600 nm wavelength regions. Results shown for samples fabricated under both oxidising and reducing conditions.

Fig. 5
Fig. 5

(a) Experimental setup for the detection of OSL from a single optical fibre using a single photon avalanche diode (SPAD), irradiation is provided from a 90Sr/90Y foil source. 532 nm is used for optical alignment of the system, 852 nm is used for optical excitation during the OSL measurements. (b) Depiction of fibre irradiation when using the X-ray source, where the whole fibre is irradiated. All other parts of the experiment are identical to that shown in (a).

Fig. 6
Fig. 6

OSL results of terbium-red fibres and canes using a dosage of 14.6 ± 0.5 Gy and detection in the 350 – 600 nm wavelength region using a Schott BG39 filter and approximately 20 mW of optical stimulation at 852 nm. (a) Intensity as a function of fibre diameter (950 – 400 µm were from fibre F2, and 250 – 160 µm were from fibre F3, both fibres from terbium-red). The trendline shows a quadratic fit. (b) OSL with respect to intensity as a function of the position of the 90Sr/90Y radiation source along fibre pieces from fibre F4 (terbium-ox), measured from the proximal end. Trendlines show a linear fit.

Fig. 7
Fig. 7

OSL results following X-ray irradiation of 200 µm fibres from trials F3 (terbium-red) and F4 (terbium-ox). Irradiations were performed over a range of X-ray beam intensities, using X-ray tube potentials of (a) 100 kV and (b) 300 kV.

Tables (2)

Tables Icon

Table 1 OSL response of doped and undoped FP glass, fabricated under both oxidising and reducing conditions, integrated from 0 – 0.2 s. 275 – 400 nm indicates OSL in this wavelength region, achieved using a HOYA U340 filter and 470 nm stimulation. 350 – 600 nm indicates emission in this wavelength region achieved with a Schott BG39 filter and 870 nm stimulation.

Tables Icon

Table 2 Distance along a Tb3+-doped fibre of fibre trial F4 (terbium-ox) at which an OSL signal is measurable using an absorbed dose of 14.6 ± 0.5 Gy from a 90Sr/90Y beta source.

Metrics