Abstract

VO2 thin films featuring a metal-insulator transition (MIT) at 68 °C with a large reversible tunability of the optical property have attracted great interest recently. Due to the complex phase and valence states of the vanadium oxides, understanding the microstructure and optical properties of this material with different oxygen stoichiometries has been challenging. In this study, we show that confocal Raman microscopy mapping can resolve the phase distribution in a large vanadium oxide thin film sample area, therefore providing a useful tool for a structure-property relationship study of this material. A new Raman peak at 166 cm−1 is observed in oxygen rich VO2 films, which forms micron size islands in the films, and is attributed to the characteristic peak of V4+/V5+ mixed valence states. The mixed valence state structure exists in a large oxygen partial pressure window during thin film fabrication. By joining the structural analysis and optical constants fitted by the Drude-Lorentz model using effective medium theory, the influence of different phases and valence states to the optical constants of the vanadium oxide thin films is clearly observed. These results provide in-depth understanding of the structure-optical property relationship of vanadium oxide thin films.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of vanadium dioxide and vanadium pentoxide thin films

Elizabeth E. Chain
Appl. Opt. 30(19) 2782-2787 (1991)

Facile photothermal synthesis of localized vanadium oxide capable of extraordinary phase transition

Giwan Seo, Jong-Bum You, Bong-Jun Kim, Juhyeon Shin, Shin Ho Kim, and Kyoungsik Yu
Opt. Mater. Express 7(8) 2860-2870 (2017)

Effect of annealing temperature on the structure and properties of vanadium oxide films

Yueyan Liu, Juncheng Liu, Yuanbao Li, Danping Wang, Lin Ren, and Kaishun Zou
Opt. Mater. Express 6(5) 1552-1560 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
    [Crossref] [PubMed]
  2. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
    [Crossref] [PubMed]
  3. G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
    [Crossref]
  4. F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  5. R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92(2), 021904 (2008).
    [Crossref]
  6. F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
    [Crossref]
  7. J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
    [Crossref]
  8. C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
    [Crossref]
  9. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref] [PubMed]
  10. F. Be’teille and J. Livage, “Optical switching in VO2 thin films,” J. Sol-Gel Sci. Techn. 13, 915 (1998).
  11. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
    [PubMed]
  12. X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
    [Crossref]
  13. L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
    [Crossref] [PubMed]
  14. E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
    [Crossref]
  15. G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
    [Crossref]
  16. E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
    [Crossref]
  17. G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
    [Crossref]
  18. L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
    [Crossref]
  19. A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
    [Crossref]
  20. K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
    [Crossref]
  21. S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
    [Crossref] [PubMed]
  22. H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
    [Crossref]
  23. H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
    [Crossref] [PubMed]
  24. H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
    [Crossref] [PubMed]
  25. S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
    [Crossref] [PubMed]
  26. D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
    [Crossref]
  27. H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
    [Crossref]
  28. H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B 68(2), 024109 (2003).
    [Crossref]
  29. U. Schwingenschlög and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Ann. Phys. 13(9), 475–510 (2004).
    [Crossref]
  30. P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
    [Crossref]
  31. C. H. Griffiths, “Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide,” J. Appl. Phys. 45(5), 2201 (1974).
    [Crossref]
  32. S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
    [Crossref]
  33. H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
    [Crossref]
  34. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
    [Crossref] [PubMed]
  35. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
    [Crossref] [PubMed]
  36. Y. Muraokaa and Z. Hiroi, “Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80, 4 (2001).
  37. V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).
  38. G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
    [Crossref]
  39. R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
    [Crossref]
  40. A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
    [Crossref]
  41. X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
    [Crossref]
  42. Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
    [Crossref]
  43. M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS,” Surf. Sci. 454, 41–44 (2000).
    [Crossref]
  44. M. Nagashima and H. Wada, “The oxygen deficiency effect of VO2 thin films prepared by laser ablation,” J. Mater. Res. 12(02), 416–422 (1997).
    [Crossref]
  45. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
    [Crossref]
  46. R. N. Mlyuka, A. G. Niklasson, and C. G. Granqvist, “Thermochromic VO2 based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi., A Appl. Mater. Sci. 206(9), 2155–2160 (2009).
    [Crossref]
  47. Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
    [Crossref]
  48. S. J. Liu, Y. T. Su, and J. H. Hsieh, “Effects of postdeposition annealing on the metal–insulator transition of VO2−x thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 53(3), 033201 (2014).
    [Crossref]
  49. V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
    [Crossref]
  50. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
    [Crossref]
  51. M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
    [Crossref]
  52. B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).
  53. J. Livage, “Hydrothermal synthesis of nanostructured vanadium oxides,” Materials (Basel) 3(8), 4175–4195 (2010).
    [Crossref]
  54. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  55. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
    [Crossref]
  56. M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
    [Crossref]
  57. A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
    [Crossref]
  58. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  59. M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
    [Crossref]

2016 (1)

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

2015 (6)

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
[Crossref]

2014 (4)

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

S. J. Liu, Y. T. Su, and J. H. Hsieh, “Effects of postdeposition annealing on the metal–insulator transition of VO2−x thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 53(3), 033201 (2014).
[Crossref]

2013 (8)

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

2012 (2)

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

2011 (1)

S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[Crossref] [PubMed]

2010 (3)

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
[Crossref] [PubMed]

J. Livage, “Hydrothermal synthesis of nanostructured vanadium oxides,” Materials (Basel) 3(8), 4175–4195 (2010).
[Crossref]

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

2009 (3)

R. N. Mlyuka, A. G. Niklasson, and C. G. Granqvist, “Thermochromic VO2 based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi., A Appl. Mater. Sci. 206(9), 2155–2160 (2009).
[Crossref]

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

2008 (3)

R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
[Crossref]

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92(2), 021904 (2008).
[Crossref]

D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
[Crossref]

2006 (4)

G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
[Crossref]

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
[Crossref]

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

2005 (1)

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

2004 (2)

U. Schwingenschlög and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Ann. Phys. 13(9), 475–510 (2004).
[Crossref]

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

2003 (2)

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B 68(2), 024109 (2003).
[Crossref]

2002 (3)

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[Crossref]

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

2001 (4)

Y. Muraokaa and Z. Hiroi, “Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80, 4 (2001).

M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
[Crossref]

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

2000 (2)

M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
[Crossref]

M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS,” Surf. Sci. 454, 41–44 (2000).
[Crossref]

1998 (1)

F. Be’teille and J. Livage, “Optical switching in VO2 thin films,” J. Sol-Gel Sci. Techn. 13, 915 (1998).

1997 (1)

M. Nagashima and H. Wada, “The oxygen deficiency effect of VO2 thin films prepared by laser ablation,” J. Mater. Res. 12(02), 416–422 (1997).
[Crossref]

1995 (1)

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

1994 (1)

E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
[Crossref]

1974 (1)

C. H. Griffiths, “Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide,” J. Appl. Phys. 45(5), 2201 (1974).
[Crossref]

1971 (1)

B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1966 (1)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Ablett, J. M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Adelmann, C.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Aetukuri, N.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Alem, N.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Alves, O. L.

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

Ashrit, P. V.

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92(2), 021904 (2008).
[Crossref]

Atwater, H. A.

Aydin, K.

Baddour-Hadjean, R.

R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
[Crossref]

Balu, R.

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92(2), 021904 (2008).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Barreca, D.

M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
[Crossref]

M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
[Crossref]

Baumgart, H.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Be’teille, F.

F. Be’teille and J. Livage, “Optical switching in VO2 thin films,” J. Sol-Gel Sci. Techn. 13, 915 (1998).

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Bernussi, A. A.

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

Boatner, L. A.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

Boyd, E. M.

Briggs, R. M.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Bruno, G.

M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
[Crossref]

M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
[Crossref]

Cao, C.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Cao, W.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Cetavernier, C.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Chae, B.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Chae, B. G.

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Charipar, N.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Chen, C. H.

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Chen, F. H.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chen, H. D.

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Chen, L.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Chen, S.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chen, W.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Chen, X.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chen, X. Q.

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

Chen, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Chu, J.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Chu, W. S.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Chudnovskii, F. A.

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

Cros, F.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

Cuypers, D.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Dai, L.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Davydov, V. Y.

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

Demeter, M.

M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS,” Surf. Sci. 454, 41–44 (2000).
[Crossref]

Deng, Q.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Depmeier, W.

H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B 68(2), 024109 (2003).
[Crossref]

Detavernier, C.

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

Devulder, W.

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

Dicken, M. J.

Ding, Y.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Donev, E. U.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
[Crossref]

Dussarrat, C.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Elshocht, S. V.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Engel-Herbert, R.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Eyert, V.

U. Schwingenschlög and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Ann. Phys. 13(9), 475–510 (2004).
[Crossref]

Fan, L. L.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Fan, S.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Fan, Y. C.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

Fan, Z. Y.

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

Feldman, L. C.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

Ferreira, O. P.

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

Franquet, A.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Fu, G.

G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
[Crossref]

Gao, Y.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Gavarri, J. R.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

Goncharuk, I. N.

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

Goodenough, B.

B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Graf, T.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Granqvist, C. G.

R. N. Mlyuka, A. G. Niklasson, and C. G. Granqvist, “Thermochromic VO2 based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi., A Appl. Mater. Sci. 206(9), 2155–2160 (2009).
[Crossref]

Griffiths, C. H.

C. H. Griffiths, “Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide,” J. Appl. Phys. 45(5), 2201 (1974).
[Crossref]

Guggenheim, H. J.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Guinneton, F.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

Guo, B.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Haglund, R. F.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

Haislmaier, R. C.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Hatano, T.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Haynes, T. E.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

Hiroi, Z.

Y. Muraokaa and Z. Hiroi, “Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80, 4 (2001).

Holtz, M.

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

Hsieh, J. H.

S. J. Liu, Y. T. Su, and J. H. Hsieh, “Effects of postdeposition annealing on the metal–insulator transition of VO2−x thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 53(3), 033201 (2014).
[Crossref]

Hu, B.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Hu, M.

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Hu, Zh.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Huang, C. K.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

Huang, C. M.

X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
[Crossref]

Ilinskii, A. V.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Ishaq, A.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Iwasa, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Jeong, J.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Jia, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Jiang, K.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Jurczak, M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Kang, K.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kaplan, G.

Katzke, H.

H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B 68(2), 024109 (2003).
[Crossref]

Kawasaki, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Khanin, S. D.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Kim, B. J.

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Kim, D. H.

E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
[Crossref]

Kim, G.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kim, G. H.

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

Kim, H.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kim, H. T.

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Kim, I. S.

S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[Crossref] [PubMed]

Kim, K.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kittiwatanakul, S.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Klimov, V. A.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Kulkarni, D.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Kuryatkov, V. V.

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

Kwok, H. S.

E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
[Crossref]

Lan, W.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

Lauhon, L. J.

S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[Crossref] [PubMed]

Laverock, J.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Lee, I. Y.

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

Lee, S.-J.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Lee, Y. W.

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Li, G. H.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Liang, J. R.

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Lim, Y.-S.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Liu, H.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Liu, H. W.

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

Liu, J.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Liu, K.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Liu, M.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Liu, S. J.

S. J. Liu, Y. T. Su, and J. H. Hsieh, “Effects of postdeposition annealing on the metal–insulator transition of VO2−x thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 53(3), 033201 (2014).
[Crossref]

Liu, X.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Liu, X. Q.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
[Crossref]

Livage, J.

J. Livage, “Hydrothermal synthesis of nanostructured vanadium oxides,” Materials (Basel) 3(8), 4175–4195 (2010).
[Crossref]

F. Be’teille and J. Livage, “Optical switching in VO2 thin films,” J. Sol-Gel Sci. Techn. 13, 915 (1998).

Lopez, R.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

Losurdo, M.

M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
[Crossref]

M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
[Crossref]

Lu, B. A.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

Lu, J.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Luo, H.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Luo, Y. Y.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Lv, Q.

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

Ma, H.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Ma, J.

Martens, K.

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Meersschaut, J.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Mendes Filho, J.

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

Meyer, B. K.

G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
[Crossref]

Mlyuka, R. N.

R. N. Mlyuka, A. G. Niklasson, and C. G. Granqvist, “Thermochromic VO2 based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi., A Appl. Mater. Sci. 206(9), 2155–2160 (2009).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Mukherjee, D.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Muraokaa, Y.

Y. Muraokaa and Z. Hiroi, “Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80, 4 (2001).

Nagashima, M.

M. Nagashima and H. Wada, “The oxygen deficiency effect of VO2 thin films prepared by laser ablation,” J. Mater. Res. 12(02), 416–422 (1997).
[Crossref]

Nakano, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Narayanamurti, V.

D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
[Crossref]

Navone, C.

R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
[Crossref]

Nazari, M.

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

Neumann, M.

M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS,” Surf. Sci. 454, 41–44 (2000).
[Crossref]

Newby, D.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Niklasson, A. G.

R. N. Mlyuka, A. G. Niklasson, and C. G. Granqvist, “Thermochromic VO2 based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi., A Appl. Mater. Sci. 206(9), 2155–2160 (2009).
[Crossref]

Nminibapiel, D.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Novotny, L.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Oh, S. Y.

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Okuyama, D.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Ono, S.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Osofsky, M.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Pallem, V.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Pan, S. S.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Park, J. H.

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

Parkin, S. S. P.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Pereira-Ramas, J. P.

R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
[Crossref]

Peter, A. P.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[Crossref]

Pique, A.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Polity, A.

G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
[Crossref]

Pryce, I. M.

Qadri, S. B.

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

Qiu, J. W.

X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
[Crossref]

Radu, I.

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

Radu, I. P.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Ramanathan, S.

D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
[Crossref]

Rampelberg, G.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

Rathi, S.

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

Reichelt, W.

M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS,” Surf. Sci. 454, 41–44 (2000).
[Crossref]

Rueff, J.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Ruzmetov, D.

D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
[Crossref]

Samant, M. G.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Santos, E. J. G.

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

Sauques, L.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

Schaekers, M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Scheuer, J.

Schladt, T. D.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Schutter, B. D.

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

Schwingenschlög, U.

U. Schwingenschlög and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Ann. Phys. 13(9), 475–510 (2004).
[Crossref]

Senanayake, S. D.

D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
[Crossref]

Shadrin, E. B.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

Shen, Y.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Shi, S.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Shibuya, K.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Silva-Andrade, F.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Smirnov, M.

R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
[Crossref]

Smith, K. E.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Souza Filho, A. G.

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

Squier, J.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[Crossref]

Su, Q.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

Su, Y. T.

S. J. Liu, Y. T. Su, and J. H. Hsieh, “Effects of postdeposition annealing on the metal–insulator transition of VO2−x thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 53(3), 033201 (2014).
[Crossref]

Suh, J. Y.

E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
[Crossref]

Sweatlock, L. A.

Tang, S. H.

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

Tangirala, M.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Timofeeva, I. O.

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Toeller, M.

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Tokura, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Tolédano, P.

H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B 68(2), 024109 (2003).
[Crossref]

Tondello, E.

M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
[Crossref]

M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
[Crossref]

Tsukruk, V. V.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Valmalette, J. C.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Vikhnin, V. S.

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

Villegas, J. Y.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Volbers, N.

G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
[Crossref]

Wada, H.

M. Nagashima and H. Wada, “The oxygen deficiency effect of VO2 thin films prepared by laser ablation,” J. Mater. Res. 12(02), 416–422 (1997).
[Crossref]

Walavalkar, S.

Wan, D.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Wang, S. J.

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

Wang, Y.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

Wang, Y. Y.

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
[Crossref]

Wang, Z. L.

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Wei, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Wolf, S. A.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Wong, L. M.

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

Wu, J.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Wu, M. J.

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Wu, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Wu, Y. F.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Wu, Z. Y.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

Xia, X. X.

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Xiao, L.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Xiong, B. F.

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Xu, S. C.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[Crossref]

Yi, X. J.

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

You, Q.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Youn, D.

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Yun, S. J.

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Zhang, H. T.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Zhang, J.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Zhang, K.

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

Zhang, L.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

Zhang, S.

S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[Crossref] [PubMed]

Zhang, X. H.

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

Zhang, Y. X.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Zhang, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Zhao, Q.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Zhao, W.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Zhao, X. G.

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Zhao, Y.

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

Zheng, Y. X.

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Zhu, L. Q.

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

Zhu, N. W.

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

Zou, C. W.

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

S. Rathi, I. Y. Lee, J. H. Park, B. J. Kim, H. T. Kim, and G. H. Kim, “Postfabrication Annealing Effects on Insulator-Metal Transitions in VO2 Thin-Film Devices,” ACS Appl. Mater. Interfaces 6(22), 19718–19725 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

A. P. Peter, K. Martens, G. Rampelberg, M. Toeller, J. M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Cetavernier, J. Rueff, M. Schaekers, S. V. Elshocht, M. Jurczak, C. Adelmann, and I. P. Radu, “Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control,” Adv. Funct. Mater. 25(5), 679–686 (2015).
[Crossref]

Adv. Mater. (1)

B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, “External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor,” Adv. Mater. 22(45), 5134–5139 (2010).
[Crossref] [PubMed]

Ann. Phys. (2)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

U. Schwingenschlög and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Ann. Phys. 13(9), 475–510 (2004).
[Crossref]

Appl. Phys. (Berl.) (1)

B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, and H. T. Kim, “Temperature dependence of Mott transition in VO2 and programmable critical temperature sensor,” Appl. Phys. (Berl.) 305, 380 (2006).

Appl. Phys. Lett. (9)

Y. Muraokaa and Z. Hiroi, “Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80, 4 (2001).

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[Crossref]

M. Losurdo, G. Bruno, D. Barreca, and E. Tondello, “Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure,” Appl. Phys. Lett. 77(8), 1129 (2000).
[Crossref]

H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett. 104(8), 081913 (2014).
[Crossref]

H. W. Liu, L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang, “Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 103(15), 151908 (2013).
[Crossref]

H. Kim, B. Chae, D. Youn, G. Kim, K. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

L. L. Fan, S. Chen, Y. F. Wu, F. H. Chen, W. S. Chu, X. Chen, C. W. Zou, and Z. Y. Wu, “Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy,” Appl. Phys. Lett. 103(13), 131914 (2013).
[Crossref]

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92(2), 021904 (2008).
[Crossref]

E. U. Donev, J. Y. Suh, D. H. Kim, and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett. 65(25), 3188 (1994).
[Crossref]

Appl. Surf. Sci. (1)

X. Q. Liu, C. M. Huang, J. W. Qiu, and Y. Y. Wang, “The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes,” Appl. Surf. Sci. 253(5), 2747–2751 (2006).
[Crossref]

Chem. Mater. (1)

R. Baddour-Hadjean, J. P. Pereira-Ramas, C. Navone, and M. Smirnov, “Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films,” Chem. Mater. 20(5), 1916–1923 (2008).
[Crossref]

Chin. Phys. B (1)

J. R. Liang, M. J. Wu, M. Hu, J. Liu, N. W. Zhu, X. X. Xia, and H. D. Chen, “Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal–insulator phase transition properties,” Chin. Phys. B 23(7), 076801 (2014).
[Crossref]

ECS Trans. (1)

K. Zhang, M. Tangirala, D. Nminibapiel, W. Cao, V. Pallem, C. Dussarrat, and H. Baumgart, “Synthesis of VO2 Thin Films by Atomic Layer Deposition with TEMAV as Precursor,” ECS Trans. 50(13), 175–182 (2013).
[Crossref]

J. Alloys Compd. (1)

Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X. Q. Liu, “Formation of vanadium oxides with various morphologies by chemical vapor deposition,” J. Alloys Compd. 475(1-2), 518–523 (2009).
[Crossref]

J. Appl. Phys. (4)

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031 (2002).
[Crossref]

Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu, and G. H. Li, “Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering,” J. Appl. Phys. 113(18), 183520 (2013).
[Crossref]

C. H. Griffiths, “Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide,” J. Appl. Phys. 45(5), 2201 (1974).
[Crossref]

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Zh. Hu, and J. Chu, “Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(19), 5033–5040 (2015).
[Crossref]

G. Rampelberg, B. D. Schutter, W. Devulder, K. Martens, I. Radu, and C. Detavernier, “In situ X-ray diffraction study of the controlled oxidation and reduction in the V–O system for the synthesis of VO2 and V2O3 thin films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(43), 11357–11365 (2015).
[Crossref]

J. Mater. Res. (1)

M. Nagashima and H. Wada, “The oxygen deficiency effect of VO2 thin films prepared by laser ablation,” J. Mater. Res. 12(02), 416–422 (1997).
[Crossref]

J. Phys. Chem. Solids (1)

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties,” J. Phys. Chem. Solids 62(7), 1229–1238 (2001).
[Crossref]

J. Sol-Gel Sci. Techn. (1)

F. Be’teille and J. Livage, “Optical switching in VO2 thin films,” J. Sol-Gel Sci. Techn. 13, 915 (1998).

J. Solid State Chem. (1)

B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. J. Liu, Y. T. Su, and J. H. Hsieh, “Effects of postdeposition annealing on the metal–insulator transition of VO2−x thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 53(3), 033201 (2014).
[Crossref]

Materials (Basel) (1)

J. Livage, “Hydrothermal synthesis of nanostructured vanadium oxides,” Materials (Basel) 3(8), 4175–4195 (2010).
[Crossref]

Nano Lett. (3)

A. G. Souza Filho, O. P. Ferreira, E. J. G. Santos, J. Mendes Filho, and O. L. Alves, “Raman spectra in vanadate nanotubes revisited,” Nano Lett. 4(11), 2099–2104 (2004).
[Crossref]

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

H. T. Zhang, L. Zhang, D. Mukherjee, Y. X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6, 8475 (2015).
[Crossref] [PubMed]

Nature (1)

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (4)

M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz, “Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations,” Phys. Rev. B 87(3), 035142 (2013).
[Crossref]

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of subwavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, “Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films,” Phys. Rev. B 77(19), 195442 (2008).
[Crossref]

H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B 68(2), 024109 (2003).
[Crossref]

Phys. Rev. Lett. (3)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Phys. Solid State (1)

V. S. Vikhnin, I. N. Goncharuk, V. Y. Davydov, F. A. Chudnovskii, and E. B. Shadrin, “Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition,” Phys. Solid State 37, 1971 (1995).

Phys. Status Solidi., A Appl. Mater. Sci. (1)

R. N. Mlyuka, A. G. Niklasson, and C. G. Granqvist, “Thermochromic VO2 based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi., A Appl. Mater. Sci. 206(9), 2155–2160 (2009).
[Crossref]

Sci. Rep. (1)

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3, 3029 (2013).
[PubMed]

Science (1)

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation,” Science 339(6126), 1402–1405 (2013).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Surf. Sci. (1)

M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS,” Surf. Sci. 454, 41–44 (2000).
[Crossref]

Tech. Phys. (1)

V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, and F. Silva-Andrade, “Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films,” Tech. Phys. 47(9), 1134–1139 (2002).
[Crossref]

Thin Solid Films (2)

M. Losurdo, D. Barreca, G. Bruno, and E. Tondello, “Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films,” Thin Solid Films 384(1), 58–64 (2001).
[Crossref]

G. Fu, A. Polity, N. Volbers, and B. K. Meyer, “Annealing effects on VO2 thin films deposited by reactive sputtering,” Thin Solid Films 515(4), 2519–2522 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) XRD spectra of vanadium oxide thin films annealed at different oxygen partial pressures. (b) Raman spectra of the vanadium oxide thin films oxidized at 150 Pa, 250 Pa and 350 Pa. (c) Surface morphology of a VO2 thin film (150 Pa anneal) studied by AFM (d) The temperature-dependence of the electrical resistivity of vanadium oxide thin films oxidized at various oxygen partial pressures.

Fig. 2
Fig. 2

Confocal Raman microscopy mapping of the intensities of characteristic Raman scattering peaks at 193 cm−1, 143 cm−1 and166 cm−1 for vanadium oxide thin films oxidized at various oxygen partial pressures.

Fig. 3
Fig. 3

Temperature dependent Raman spectrum for vanadium oxide thin film oxidized at 250 Pa at the range of 120 cm−1 to 280 cm−1 during heating the sample from 45 °C to 85 °C. The inset shows the peak intensity versus characterization temperature for the 193 cm−1 peak.

Fig. 4
Fig. 4

(a) Index of refraction and (b) extinction ratio of vanadium oxide thin films fabricated under different oxygen partial pressures, for both the insulator (25 °C) and the metal (85 °C) states.

Fig. 5
Fig. 5

Experimental and Drude-Lorentz model fitted spectrum of real and imaginary parts of the dielectric constant for (a) V2O5 (b),(c) VO2 fabricated at PO2 = 150 Pa and (d),(e) vanadium oxide with VO2 and V2O5 composite phases fabricated at PO2 = 250 Pa, for both the metal and insulator states.

Fig. 6
Fig. 6

Comparison of the resonance oscillator energies used for fitting the pure VO2 (150 Pa) and V2O5 (500 Pa) phases (black dots) and for the vanadium oxide with VO2 and V2O5 composite structure (250 Pa) (red circles) for both the (a) insulator and (b) metal states.

Tables (2)

Tables Icon

Table 1 Parameters of Drude-Lorentz Model of VO2 and V2O5

Tables Icon

Table 2 Parameters of Drude-Lorentz Model of vanadium oxide composite

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

4 V V × + O 2 V O 2 2 O o × + V V 4' +4 V V (in V O 2 ) O O V 2 O 5 1 2 O 2 + V O + V V ' (in V 2 O 5 )
ε(ω)= ε 1 i ε 2 = ε ω p 2 ω 2 iω γ p + k S k ω k 2 ω k 2 ω 2 +iω Γ k ω k
ε(ω)= ε 1 i ε 2 = ε + j S j ω j 2 ω j 2 ω 2 +iω Γ j ω j
ε(ω)= ε +f[ k S k ω k 2 ω k 2 ω 2 +iω Γ k ω k ω p 2 ω 2 iω γ p ]+(1f) j S j ω j 2 ω j 2 ω 2 +iω Γ j ω j
ε 1 = n 2 k 2 ε 2 =2nk

Metrics