Abstract

Bulk samples of As-S chalcogenide glasses were prepared by an interaction of vapors of volatile precursors in low-temperature non-equilibrium plasma discharge (plasma enhanced chemical vapor deposition (PECVD process)). Elemental arsenic and sulfur (As + S), and arsenic monosulfide and sulfur (As4S4 + S) were used as initial substances. In parallel, the As-S bulk samples were synthesized by “traditional” melting of the initial substances in the evacuated quartz ampoule from the same precursors. The optical properties of the bulk samples were compared. The exhausted gas mixtures were analyzed to clarify the difference in carbon impurities content. 3D laser ultra microscopy was used to determine the content of heterophase inclusions in the samples.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of optical properties and impurities content of Ge-Sb-S-I glasses prepared by different methods

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, M. A. Kudryashov, A. I. Mashin, A. N. Stepanov, A. I. Korytin, A. V. Vorotyntsev, and V. M. Vorotyntsev
Opt. Mater. Express 6(12) 3759-3765 (2016)

Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2

Frank Froehlich, Claudia Aichele, Stephan Grimm, and Kay Schuster
Opt. Mater. Express 3(11) 1839-1854 (2013)

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala
Opt. Express 18(25) 26655-26665 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. C. Peterson and U. Moller, “Mid-infrared supercontinuum covering the 1.4-13.3 mm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  3. M. E. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55(11), 4058 (1984).
    [Crossref]
  4. J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2014)
  5. M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
    [Crossref]
  6. Patent of Russian Federation RU 2419589 C1. Snopatin G.E., Plotnichenko V. G., and Churbanov M.F. “Method preparation of chalcogenide glasses of the As-S system with low concentration of oxygen,” (in Russian). Published 27.05.2011.
  7. N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–80 (1965).
    [Crossref]
  8. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  9. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. G. Borisevich, and V. G. Plotnichenko, “An influence of carbon impurities on As-S and As-Se glass optical transmission,” Proc. of IX Int. Symp. on Non-Oxide Glasses, Hangzhou, China, Extended Abstracts. 506(1994)
  10. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).
  11. L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
    [Crossref]
  12. L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
    [Crossref]
  13. A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
    [Crossref]
  14. J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
    [Crossref]
  15. A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
    [Crossref]
  16. L. A. Ketkova and M. F. Churbanov, “3D Laser Ultramicroscopy: A Method for Nondestructive Characterization of Micro and Nanoinclusions in High Purity Materials for Fiber and Power Optics,” Inorg. Mater. 50(12), 1301–1316 (2014).
    [Crossref]
  17. J. Berkowitz and J. R. Marquart, “Equilibrium Composition of Sulfur Vapor,” J. Chem. Phys. 39(2), 275 (1963).
    [Crossref]
  18. N. M. Erdevdy, O. B. Shpenik, and P. P. Markush, “Electron-impact excitation of gas-phase sulfur,” J. Appl. Spectrosc. 82(1), 19–24 (2014).
  19. L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
    [Crossref]
  20. A. V. Gusev, A. Yu. Sukhanov, and R. A. Kornev, “Behavior of carbon containing impurities during plasma synthesis of trichlorosilane,” High Energy Chem. 42(1), 56–58 (2008).
    [Crossref]

2016 (1)

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

2015 (2)

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

2014 (5)

C. Peterson and U. Moller, “Mid-infrared supercontinuum covering the 1.4-13.3 mm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
[Crossref]

L. A. Ketkova and M. F. Churbanov, “3D Laser Ultramicroscopy: A Method for Nondestructive Characterization of Micro and Nanoinclusions in High Purity Materials for Fiber and Power Optics,” Inorg. Mater. 50(12), 1301–1316 (2014).
[Crossref]

N. M. Erdevdy, O. B. Shpenik, and P. P. Markush, “Electron-impact excitation of gas-phase sulfur,” J. Appl. Spectrosc. 82(1), 19–24 (2014).

L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
[Crossref]

2012 (1)

S. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2009 (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

2008 (1)

A. V. Gusev, A. Yu. Sukhanov, and R. A. Kornev, “Behavior of carbon containing impurities during plasma synthesis of trichlorosilane,” High Energy Chem. 42(1), 56–58 (2008).
[Crossref]

1998 (1)

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).

1992 (1)

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

1984 (1)

M. E. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55(11), 4058 (1984).
[Crossref]

1978 (1)

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

1965 (1)

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–80 (1965).
[Crossref]

1963 (1)

J. Berkowitz and J. R. Marquart, “Equilibrium Composition of Sulfur Vapor,” J. Chem. Phys. 39(2), 275 (1963).
[Crossref]

Berkowitz, J.

J. Berkowitz and J. R. Marquart, “Equilibrium Composition of Sulfur Vapor,” J. Chem. Phys. 39(2), 275 (1963).
[Crossref]

Bertoluzza, A.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Churbanov, M. F.

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

L. A. Ketkova and M. F. Churbanov, “3D Laser Ultramicroscopy: A Method for Nondestructive Characterization of Micro and Nanoinclusions in High Purity Materials for Fiber and Power Optics,” Inorg. Mater. 50(12), 1301–1316 (2014).
[Crossref]

L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

Devyatykh, G. G.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

Erdevdy, N. M.

N. M. Erdevdy, O. B. Shpenik, and P. P. Markush, “Electron-impact excitation of gas-phase sulfur,” J. Appl. Spectrosc. 82(1), 19–24 (2014).

Fagnano, C.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Gleason, B.

J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
[Crossref]

Gusev, A. V.

A. V. Gusev, A. Yu. Sukhanov, and R. A. Kornev, “Behavior of carbon containing impurities during plasma synthesis of trichlorosilane,” High Energy Chem. 42(1), 56–58 (2008).
[Crossref]

Jackson, S.

S. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Kapany, N. S.

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–80 (1965).
[Crossref]

Ketkova, L. A.

L. A. Ketkova and M. F. Churbanov, “3D Laser Ultramicroscopy: A Method for Nondestructive Characterization of Micro and Nanoinclusions in High Purity Materials for Fiber and Power Optics,” Inorg. Mater. 50(12), 1301–1316 (2014).
[Crossref]

Kornev, R. A.

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
[Crossref]

A. V. Gusev, A. Yu. Sukhanov, and R. A. Kornev, “Behavior of carbon containing impurities during plasma synthesis of trichlorosilane,” High Energy Chem. 42(1), 56–58 (2008).
[Crossref]

Kostrov, A. V.

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

Lines, M. E.

M. E. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55(11), 4058 (1984).
[Crossref]

Lobanov, A. S.

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

Markush, P. P.

N. M. Erdevdy, O. B. Shpenik, and P. P. Markush, “Electron-impact excitation of gas-phase sulfur,” J. Appl. Spectrosc. 82(1), 19–24 (2014).

Marquart, J. R.

J. Berkowitz and J. R. Marquart, “Equilibrium Composition of Sulfur Vapor,” J. Chem. Phys. 39(2), 275 (1963).
[Crossref]

Mashin, A. I.

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

Mochalov, L. A.

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
[Crossref]

Moller, U.

C. Peterson and U. Moller, “Mid-infrared supercontinuum covering the 1.4-13.3 mm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Monti, P.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Musgraves, J. D.

J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
[Crossref]

Nezhdanov, A. V.

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

Peterson, C.

C. Peterson and U. Moller, “Mid-infrared supercontinuum covering the 1.4-13.3 mm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

Richardson, K.

J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
[Crossref]

Scripachev, I. V.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).

Semerano, G.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Sennikov, G. P.

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

Sennikov, P. G.

L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
[Crossref]

Shipunov, V. A.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

Shpenik, O. B.

N. M. Erdevdy, O. B. Shpenik, and P. P. Markush, “Electron-impact excitation of gas-phase sulfur,” J. Appl. Spectrosc. 82(1), 19–24 (2014).

Simms, R. J.

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–80 (1965).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

Sukhanov, A. Yu.

A. V. Gusev, A. Yu. Sukhanov, and R. A. Kornev, “Behavior of carbon containing impurities during plasma synthesis of trichlorosilane,” High Energy Chem. 42(1), 56–58 (2008).
[Crossref]

Velmuzhov, A. P.

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

Vorotyntsev, A. V.

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

Vorotyntsev, V. M.

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

Wachtel, P.

J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
[Crossref]

High Energy Chem. (1)

A. V. Gusev, A. Yu. Sukhanov, and R. A. Kornev, “Behavior of carbon containing impurities during plasma synthesis of trichlorosilane,” High Energy Chem. 42(1), 56–58 (2008).
[Crossref]

Infrared Phys. (1)

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5(2), 69–80 (1965).
[Crossref]

Inorg. Mater. (2)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

L. A. Ketkova and M. F. Churbanov, “3D Laser Ultramicroscopy: A Method for Nondestructive Characterization of Micro and Nanoinclusions in High Purity Materials for Fiber and Power Optics,” Inorg. Mater. 50(12), 1301–1316 (2014).
[Crossref]

J of Non-crystalline Solids (1)

J. D. Musgraves, P. Wachtel, B. Gleason, and K. Richardson, “Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system,” J of Non-crystalline Solids 386, 61–66 (2014).
[Crossref]

J. Appl. Phys. (1)

M. E. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55(11), 4058 (1984).
[Crossref]

J. Appl. Spectrosc. (1)

N. M. Erdevdy, O. B. Shpenik, and P. P. Markush, “Electron-impact excitation of gas-phase sulfur,” J. Appl. Spectrosc. 82(1), 19–24 (2014).

J. Chem. Phys. (1)

J. Berkowitz and J. R. Marquart, “Equilibrium Composition of Sulfur Vapor,” J. Chem. Phys. 39(2), 275 (1963).
[Crossref]

J. Fluor. Chem. (1)

L. A. Mochalov, R. A. Kornev, M. F. Churbanov, and P. G. Sennikov, “Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF Capacitive Plasma Discharge,” J. Fluor. Chem. 160, 48–51 (2014).
[Crossref]

J. Non-Cryst. Solids (3)

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2S3 chalcogenide glasses,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. V. Kostrov, and V. M. Vorotyntsev, “Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 423–424, 76–80 (2015).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

Nat. Photonics (2)

S. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

C. Peterson and U. Moller, “Mid-infrared supercontinuum covering the 1.4-13.3 mm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Mater. (1)

L. A. Mochalov, M. F. Churbanov, A. P. Velmuzhov, A. S. Lobanov, R. A. Kornev, and G. P. Sennikov, “Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition,” Opt. Mater. 46, 310–313 (2015).
[Crossref]

Proc. SPIE, 1228. Infrared Fibers (1)

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, and V. A. Shipunov, “Heterophase impurity inclusions in chalcogenide glass optical fibers,” Proc. SPIE, 1228. Infrared Fibers II, 16–126 (1998).

Russ. J. Appl. Chem. (1)

A. V. Vorotyntsev, L. A. Mochalov, A. S. Lobanov, A. V. Nezhdanov, A. I. Mashin, and V. M. Vorotyntsev, “PECVD synthesis of As-S glasses,” Russ. J. Appl. Chem. 89(2), 179–184 (2016).
[Crossref]

Other (3)

J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2014)

Patent of Russian Federation RU 2419589 C1. Snopatin G.E., Plotnichenko V. G., and Churbanov M.F. “Method preparation of chalcogenide glasses of the As-S system with low concentration of oxygen,” (in Russian). Published 27.05.2011.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. G. Borisevich, and V. G. Plotnichenko, “An influence of carbon impurities on As-S and As-Se glass optical transmission,” Proc. of IX Int. Symp. on Non-Oxide Glasses, Hangzhou, China, Extended Abstracts. 506(1994)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The scheme of the PECVD setup.

Fig. 2
Fig. 2

Distribution of the batch during the experiments.

Fig. 3
Fig. 3

Raman profile of the glassy batch deposited. 1 – As62S38, 2 – As52S48, 3 – As39S61, and 4 – As31S69.

Fig. 4
Fig. 4

The DSC curves of the batch deposited. 1 – As62S38, 2 – As52S48, 3 – As39S61, and 4 – As31S69.

Fig. 5
Fig. 5

Raman spectra of As2S3 bulk glasses prepared from different precursors by different techniques.

Fig. 6
Fig. 6

(a). The infrared absorption spectra of As-S bulk samples obtained via elemental As and S. 1 – prepared by the “traditional” method, 2 – sample, prepared in plasma. (b). The infrared absorption spectra of As-S bulk samples obtained via As4S4 and S. 1 – sample, prepared by the “traditional” method, 2 – sample, prepared in plasma.

Fig. 7
Fig. 7

Microphotographs and histograms of inclusion distribution on sizes in As-S glass samples, prepared by the “traditional” method (a) and PECVD method (b) from As and S.

Fig. 8
Fig. 8

Microphotographs and histograms of inclusion distribution on sizes in As-S glass samples, prepared by the “traditional” method (a) and PECVD method (b) from As4S4 and S.

Tables (2)

Tables Icon

Table 1 Chemical consistence of the batch into 1, 2, 3 and 4 zones of precipitation for the As36S64 bulk sample.

Tables Icon

Table 2 Contents of the exhausted gas mixtures.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

3S + 2H 2 O( vapor ) = 2H 2 S + SO 2
H 2  H 2 + O 2
8S ( ring ) 8S
with releasing of carbon nanoparticles selective oxidation C + O 2 = CO 2
S + O 2 = SO 2
C + O 2 = CO 2

Metrics