Abstract

Temperature-dependent fluorescence of YAG:Ce was studied as an example of a spectral characterization method. According to the steady-state emission at various temperatures, four types of temperature sensing functions were retrieved using behaviors of 1) wavenumber at emission band maximum magnitude, 2) wavenumber of emission band barycenter, 3) emission bandwidth, and 4) the ratio of intensities at different wavelengths in the emission band. All four types of functions demonstrate a near linear relationship with temperature in the measured temperature range. Function No. 2 shows finer precision than function No. 1, while they have the same meaning in physics. Mechanisms of the temperature dependence are discussed after a brief review of emission peak shifts of Ce3+-doped garnets. Function No. 3 shows an abnormal narrowing of the band with increasing temperature which can be related to the narrowing ground levels’ splitting gap. In the experiment, the two novel spectral characterization methods showed their advantages: the barycenter technique contains the smallest uncertainty, and the self-referenced intensity ratio technique provides flexible ratiometric sensing functions for various measurement needs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis and characterization of Ce:YAG nano-phosphors and ceramics

F. A. Selim, A. Khamehchi, D. Winarski, and S. Agarwal
Opt. Mater. Express 6(12) 3704-3715 (2016)

Energy transfer between Ce3+ and Tb3+ and the enhanced luminescence of a green phosphor SrB2O4:Ce3+, Tb3+, Na+

Shaojun Sun, Li Wu, Huan Yi, Liwei Wu, Jingyuan Ji, Chunling Zhang, Yi Zhang, Yongfa Kong, and Jingjun Xu
Opt. Mater. Express 6(4) 1172-1185 (2016)

High luminous fluorescence generation using Ce:YAG transparent ceramic excited by blue laser diode

Yuan Yuan, Dongzhou Wang, Bojian Zhou, Shaowei Feng, Minyuan Sun, Shuo Zhang, Weinan Gao, Yong Bi, and Haiming Qin
Opt. Mater. Express 8(9) 2760-2767 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. P. Demchenko, Introduction to fluorescence sensing (Springer Science & Business Media, 2008).
  2. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  3. X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  4. P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Tran. 53(15-16), 3275–3283 (2010).
    [Crossref]
  5. S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
    [Crossref]
  6. Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
    [Crossref]
  7. V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
    [Crossref]
  8. Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
    [Crossref]
  9. A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
    [Crossref]
  10. S. P. Ying, P. T. Chou, and H. K. Fu, “Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer,” Opt. Lasers Eng. 51(10), 1179–1184 (2013).
    [Crossref]
  11. N. Narendran, Y. Gu, and R. Hosseinzadeh, “Estimating junction temperature of high-flux white LEDs,” in Integrated Optoelectronic Devices 2004, International Society for Optics and Photonics, pp. 158–160 (2004).
  12. Y. Gu and N. Narendran, “A noncontact method for determining junction temperature of phosphor-converted white LEDs,” in Optical Science and Technology, SPIE's 48th Annual Meeting, International Society for Optics and Photonics, pp. 107–114 (2004).
  13. J. Barzowska, M. Grinberg, and T. Tsuboi, “High pressure spectroscopy of Ce doped YAG crystal,” Radiat. Eff. Defects Solids 158(1-6), 39–47 (2003).
    [Crossref]
  14. M. Grinberg, “High pressure spectroscopy of rare earth ions doped crystals - new results,” Opt. Mater. 28(1-2), 26–34 (2006).
    [Crossref]
  15. W. Zhang, Z. Li, G. W. Baxter, and S. F. Collins, “Stress- and temperature-dependent fluorescence of YAG:Ce composite for sensing application,” Exp. Mech. Online first (2016).
  16. S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
    [Crossref]
  17. S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
    [Crossref]
  18. G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
    [Crossref]
  19. A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
    [Crossref]
  20. R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
    [Crossref]
  21. K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
    [Crossref]
  22. Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
    [Crossref]
  23. Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
    [Crossref]
  24. H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances,” Opt. Mater. Express 4(4), 649–655 (2014).
    [Crossref]
  25. X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
    [Crossref]
  26. S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
    [Crossref]
  27. Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
    [Crossref]
  28. K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg.) 123(7), 621–623 (2012).
    [Crossref]
  29. R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
    [Crossref]
  30. H. Yang, D. K. Lee, and Y. S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
    [Crossref]
  31. E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
    [Crossref]
  32. D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
    [Crossref]
  33. N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
    [Crossref]
  34. E. Antic-Fidancev, “Simple way to test the validity of 2S+1LJ barycenters of rare earth ions (e.g. 4f2, 4f3 and 4f6 configurations),” J. Alloys Compd. 300–301, 2–10 (2000).
    [Crossref]
  35. W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
    [Crossref]
  36. P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
    [Crossref]
  37. J. Andriessen, E. van der Kolk, and P. Dorenbos, “Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect,” Phys. Rev. B 76(7), 075124 (2007).
    [Crossref]
  38. J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441(4-6), 250–254 (2007).
    [Crossref]
  39. R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Mater. Sci. 45(1), 146–150 (2010).
    [Crossref]
  40. Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
    [Crossref]
  41. P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
    [Crossref]
  42. A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
    [Crossref]
  43. X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref] [PubMed]
  44. W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

2016 (1)

2015 (2)

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

2014 (1)

2013 (4)

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

S. P. Ying, P. T. Chou, and H. K. Fu, “Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer,” Opt. Lasers Eng. 51(10), 1179–1184 (2013).
[Crossref]

2012 (4)

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg.) 123(7), 621–623 (2012).
[Crossref]

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

2011 (5)

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
[Crossref]

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

2010 (5)

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Tran. 53(15-16), 3275–3283 (2010).
[Crossref]

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Mater. Sci. 45(1), 146–150 (2010).
[Crossref]

2009 (2)

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

H. Yang, D. K. Lee, and Y. S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[Crossref]

2008 (4)

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[Crossref]

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
[Crossref]

2007 (3)

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

J. Andriessen, E. van der Kolk, and P. Dorenbos, “Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect,” Phys. Rev. B 76(7), 075124 (2007).
[Crossref]

J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441(4-6), 250–254 (2007).
[Crossref]

2006 (4)

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
[Crossref]

S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
[Crossref]

M. Grinberg, “High pressure spectroscopy of rare earth ions doped crystals - new results,” Opt. Mater. 28(1-2), 26–34 (2006).
[Crossref]

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

2005 (1)

G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
[Crossref]

2004 (1)

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[Crossref]

2003 (2)

S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
[Crossref]

J. Barzowska, M. Grinberg, and T. Tsuboi, “High pressure spectroscopy of Ce doped YAG crystal,” Radiat. Eff. Defects Solids 158(1-6), 39–47 (2003).
[Crossref]

2000 (1)

E. Antic-Fidancev, “Simple way to test the validity of 2S+1LJ barycenters of rare earth ions (e.g. 4f2, 4f3 and 4f6 configurations),” J. Alloys Compd. 300–301, 2–10 (2000).
[Crossref]

Allison, S.

R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Mater. Sci. 45(1), 146–150 (2010).
[Crossref]

Allison, S. W.

S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
[Crossref]

Andriessen, J.

J. Andriessen, E. van der Kolk, and P. Dorenbos, “Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect,” Phys. Rev. B 76(7), 075124 (2007).
[Crossref]

Antic-Fidancev, E.

E. Antic-Fidancev, “Simple way to test the validity of 2S+1LJ barycenters of rare earth ions (e.g. 4f2, 4f3 and 4f6 configurations),” J. Alloys Compd. 300–301, 2–10 (2000).
[Crossref]

Arsentyev, D. V.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Barzowska, J.

J. Barzowska, M. Grinberg, and T. Tsuboi, “High pressure spectroscopy of Ce doped YAG crystal,” Radiat. Eff. Defects Solids 158(1-6), 39–47 (2003).
[Crossref]

Baxter, G. W.

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

Berezovskaya, I. V.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Bettinelli, M.

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

Birkel, A.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Birkel, C. S.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Brik, M. G.

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

Bu, Y.

X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Cai, P.

Cao, Y.

Cates, M. R.

S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
[Crossref]

Chamarthy, P.

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Tran. 53(15-16), 3275–3283 (2010).
[Crossref]

Chander, H.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
[Crossref]

Cheetham, A. K.

J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441(4-6), 250–254 (2007).
[Crossref]

Chen, D.

Chen, J.

Cheng, B. M.

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

Chou, P. T.

S. P. Ying, P. T. Chou, and H. K. Fu, “Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer,” Opt. Lasers Eng. 51(10), 1179–1184 (2013).
[Crossref]

Chung, E. J.

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Collins, S. F.

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

Dan’ko, A.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Denault, K. A.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Doll, C. E.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Dong, Y.

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Dorenbos, P.

J. Andriessen, E. van der Kolk, and P. Dorenbos, “Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect,” Phys. Rev. B 76(7), 075124 (2007).
[Crossref]

Doroshenko, Yu. A.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Dotsenko, V. P.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Duan, C.

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

Dujardin, C.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Dutczak, D.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Efryushina, N. P.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Enseling, D.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Fedyk, R.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Feofilov, S. P.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Fu, H. K.

S. P. Ying, P. T. Chou, and H. K. Fu, “Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer,” Opt. Lasers Eng. 51(10), 1179–1184 (2013).
[Crossref]

Fu, L.

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

Fu, Z.

S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
[Crossref]

Fujita, S.

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[Crossref]

Gacoin, T.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Gao, Y. Q.

W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
[Crossref]

Garimella, S. V.

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Tran. 53(15-16), 3275–3283 (2010).
[Crossref]

George, N. C.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Ghigna, P.

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

Gillies, G. T.

S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
[Crossref]

Gluchowski, P.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Gorbenko, V.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Grinberg, M.

M. Grinberg, “High pressure spectroscopy of rare earth ions doped crystals - new results,” Opt. Mater. 28(1-2), 26–34 (2006).
[Crossref]

J. Barzowska, M. Grinberg, and T. Tsuboi, “High pressure spectroscopy of Ce doped YAG crystal,” Radiat. Eff. Defects Solids 158(1-6), 39–47 (2003).
[Crossref]

Gundiah, G.

J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441(4-6), 250–254 (2007).
[Crossref]

Guo, X. Z.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Hansel, R.

R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Mater. Sci. 45(1), 146–150 (2010).
[Crossref]

Haranath, D.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
[Crossref]

He, J.

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

He, X. D.

W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
[Crossref]

Hery, B.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Hong, B.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Hreniak, D.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Hu, W. B.

K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
[Crossref]

Huang, J.

Huo, D.

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Jang, K. H.

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Jayasankar, C. K.

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Jiang, J.

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

Jun, X.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Jung, M. K.

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Jüstel, T.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Kareiva, A.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Katelnikovas, A.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Kim, Y. S.

H. Yang, D. K. Lee, and Y. S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[Crossref]

Kulinkin, A. B.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Lee, D. K.

H. Yang, D. K. Lee, and Y. S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[Crossref]

Lenggoro, I. W.

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Li, F.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Li, H.

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Li, J. G.

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Li, K.

K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg.) 123(7), 621–623 (2012).
[Crossref]

Li, K. K.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Li, X.

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Liang, C.

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

Liu, C. S.

X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, G. K.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Liu, H. Z.

K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
[Crossref]

Liu, Q.

Liu, T.

X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Lojkowski, W.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Lu, T.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Lu, Z.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Ma, B.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Masaki, T.

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Meltzer, R. S.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Mialon, G.

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

Mikhailovsky, A. A.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Möller, S.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Ning, L.

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

Nizankovski, S.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Ogi, T.

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Okuyama, K.

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Pan, Y.

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[Crossref]

Pan, Y. X.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Pazik, R.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Piccinelli, F.

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

Pin, S.

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

Plewa, J.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Poletaev, N. I.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Praveena, R.

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Purwanto, A.

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Puzikov, V.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Qi, J.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Qin, L.

Ronda, C.

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

Rondinone, A. J.

S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
[Crossref]

Ros, M.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Rosenberg, R. A.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Sakamoto, A.

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[Crossref]

Senthil, K.

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Seo, H. J.

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Seshadri, R.

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Shao, Q.

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

Sharma, P.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
[Crossref]

Shen, C.

K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg.) 123(7), 621–623 (2012).
[Crossref]

Shi, H.

Shi, L.

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Si, J.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Sidiroglou, F.

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

Singh, S.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
[Crossref]

Skanthakumar, S.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Song, Y. H.

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Speghini, A.

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

Strek, W.

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

Stryganyuk, G. B.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Su, F.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Su, L.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Su, Q.

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[Crossref]

Sun, X.

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Tanabe, E.

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Tanabe, S.

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[Crossref]

Tanner, P. A.

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

Tsuboi, T.

J. Barzowska, M. Grinberg, and T. Tsuboi, “High pressure spectroscopy of Ce doped YAG crystal,” Radiat. Eff. Defects Solids 158(1-6), 39–47 (2003).
[Crossref]

van der Kolk, E.

J. Andriessen, E. van der Kolk, and P. Dorenbos, “Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect,” Phys. Rev. B 76(7), 075124 (2007).
[Crossref]

Venkatramu, V.

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

Voloshinovskii, A. S.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Voznyak, T.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Vu, T.

Walker, G.

R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Mater. Sci. 45(1), 146–150 (2010).
[Crossref]

Wang, F.

Wang, J.

Wang, W.

H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances,” Opt. Mater. Express 4(4), 649–655 (2014).
[Crossref]

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

Wang, W. N.

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Wang, X.

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wei, N.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Wereley, S. T.

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Tran. 53(15-16), 3275–3283 (2010).
[Crossref]

Winkler, H.

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wu, J. L.

J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441(4-6), 250–254 (2007).
[Crossref]

Wu, M.

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[Crossref]

Wu, Y. T.

K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
[Crossref]

Xia, G.

G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
[Crossref]

Xiu, Z.

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Xu, J.

G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
[Crossref]

Yan, X.

X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yang, H.

H. Yang, D. K. Lee, and Y. S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[Crossref]

Yin, M.

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
[Crossref]

Ying, S. P.

S. P. Ying, P. T. Chou, and H. K. Fu, “Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer,” Opt. Lasers Eng. 51(10), 1179–1184 (2013).
[Crossref]

Yoon, D. H.

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Yuan, X.

Zhang, D.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Zhang, G.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Zhang, J.

S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
[Crossref]

G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
[Crossref]

Zhang, K.

K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
[Crossref]

Zhang, S.

S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
[Crossref]

Zhang, W.

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Zhang, W. W.

W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
[Crossref]

Zhao, G.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Zhou, G.

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Zhou, S.

S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
[Crossref]

G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
[Crossref]

Zhu, C.

Zorenko, Y.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Zubar, E. V.

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Zych, E.

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Appl. Phys. Lett. (2)

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89(17), 173118 (2006).
[Crossref]

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Chem. Mater. (1)

A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24(6), 1198–1204 (2012).
[Crossref]

Chem. Phys. Lett. (1)

J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441(4-6), 250–254 (2007).
[Crossref]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[Crossref]

Inorg. Mater. (1)

K. Zhang, W. B. Hu, Y. T. Wu, and H. Z. Liu, “Synthesis, luminescence, and effect of heat treatment on the properties of Y3Al5O12:Ce phosphor,” Inorg. Mater. 44(11), 1218–1223 (2008).
[Crossref]

Int. J. Heat Mass Tran. (1)

P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Tran. 53(15-16), 3275–3283 (2010).
[Crossref]

J. Alloys Compd. (7)

V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina, N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet,” J. Alloys Compd. 550, 159–163 (2013).
[Crossref]

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloys Compd. 488(2), 638–642 (2009).
[Crossref]

A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, “High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process,” J. Alloys Compd. 463(1-2), 350–357 (2008).
[Crossref]

Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” J. Alloys Compd. 498(2), 199–202 (2010).
[Crossref]

R. Praveena, L. Shi, K. H. Jang, V. Venkatramu, C. K. Jayasankar, and H. J. Seo, “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet,” J. Alloys Compd. 509(3), 859–863 (2011).
[Crossref]

E. Antic-Fidancev, “Simple way to test the validity of 2S+1LJ barycenters of rare earth ions (e.g. 4f2, 4f3 and 4f6 configurations),” J. Alloys Compd. 300–301, 2–10 (2000).
[Crossref]

W. W. Zhang, M. Yin, X. D. He, and Y. Q. Gao, “Size dependent luminescence of nanocrystalline Y2O3:Eu and connection to temperature stimulus,” J. Alloys Compd. 509(8), 3613–3616 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

X. Li, J. G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

J. Appl. Phys. (1)

S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, T. Gacoin, G. Mialon, R. S. Meltzer, and C. Dujardin, “Gaseous environment-sensitive fluorescence of YAG:Ce3+ nanocrystals,” J. Appl. Phys. 107(6), 064308 (2010).
[Crossref]

J. Cryst. Growth (1)

G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” J. Cryst. Growth 279(3-4), 357–362 (2005).
[Crossref]

J. Lumin. (3)

S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumin. 118(2), 179–185 (2006).
[Crossref]

Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin. 131(1), 17–21 (2011).
[Crossref]

Q. Shao, Y. Dong, J. Jiang, C. Liang, and J. He, “Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications,” J. Lumin. 131(5), 1013–1015 (2011).
[Crossref]

J. Mater. Sci. (1)

R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Mater. Sci. 45(1), 146–150 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[Crossref]

J. Phys. Condens. Matter (1)

P. A. Tanner, L. Fu, L. Ning, B. M. Cheng, and M. G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels,” J. Phys. Condens. Matter 19(21), 216213 (2007).
[Crossref]

Mater. Chem. Phys. (1)

H. Yang, D. K. Lee, and Y. S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[Crossref]

Mater. Res. Bull. (1)

Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. Si, “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull. 41(10), 1959–1963 (2006).
[Crossref]

Nanotechnology (1)

S. W. Allison, G. T. Gillies, A. J. Rondinone, and M. R. Cates, “Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C,” Nanotechnology 14(8), 859–863 (2003).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

S. P. Ying, P. T. Chou, and H. K. Fu, “Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer,” Opt. Lasers Eng. 51(10), 1179–1184 (2013).
[Crossref]

Opt. Mater. (4)

M. Grinberg, “High pressure spectroscopy of rare earth ions doped crystals - new results,” Opt. Mater. 28(1-2), 26–34 (2006).
[Crossref]

R. Pazik, P. Głuchowski, D. Hreniak, W. Stręk, M. Roś, R. Fedyk, and W. Łojkowski, “Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic,” Opt. Mater. 30(5), 714–718 (2008).
[Crossref]

P. Ghigna, S. Pin, C. Ronda, A. Speghini, F. Piccinelli, and M. Bettinelli, “Local structure of the Ce3+ ion in the yellow emitting phosphor YAG:Ce,” Opt. Mater. 34(1), 19–22 (2011).
[Crossref]

A. Katelnikovas, J. Plewa, D. Dutczak, S. Möller, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, “Synthesis and optical properties of green emitting garnet phosphors for phosphor-converted light emitting diodes,” Opt. Mater. 34(7), 1195–1201 (2012).
[Crossref]

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg.) 123(7), 621–623 (2012).
[Crossref]

Phys. Rev. B (1)

J. Andriessen, E. van der Kolk, and P. Dorenbos, “Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect,” Phys. Rev. B 76(7), 075124 (2007).
[Crossref]

Phys. Scr. T (1)

E. J. Chung, T. Masaki, Y. H. Song, K. Senthil, M. K. Jung, and D. H. Yoon, “Enhancement of thermal quenching properties of a yellow-emitting SiO2-coated Y3Al5O12:Ce3+ phosphor for white light-emitting diode applications,” Phys. Scr. T 157, 014012 (2013).
[Crossref]

Radiat. Eff. Defects Solids (1)

J. Barzowska, M. Grinberg, and T. Tsuboi, “High pressure spectroscopy of Ce doped YAG crystal,” Radiat. Eff. Defects Solids 158(1-6), 39–47 (2003).
[Crossref]

RSC Advances (1)

X. Wang, Q. Liu, Y. Bu, C. S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Sensor Actuat. A-Phys. (1)

W. Zhang, S. F. Collins, G. W. Baxter, F. Sidiroglou, C. Duan, and M. Yin, “Use of cross-relaxation for temperature sensing via a fluorescence intensity ratio,” Sensor Actuat. A-Phys. 232, 8–12 (2015).

Other (4)

A. P. Demchenko, Introduction to fluorescence sensing (Springer Science & Business Media, 2008).

W. Zhang, Z. Li, G. W. Baxter, and S. F. Collins, “Stress- and temperature-dependent fluorescence of YAG:Ce composite for sensing application,” Exp. Mech. Online first (2016).

N. Narendran, Y. Gu, and R. Hosseinzadeh, “Estimating junction temperature of high-flux white LEDs,” in Integrated Optoelectronic Devices 2004, International Society for Optics and Photonics, pp. 158–160 (2004).

Y. Gu and N. Narendran, “A noncontact method for determining junction temperature of phosphor-converted white LEDs,” in Optical Science and Technology, SPIE's 48th Annual Meeting, International Society for Optics and Photonics, pp. 107–114 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 X-ray diffraction pattern of the phosphor powder.
Fig. 2
Fig. 2 The emission spectra of the phosphor sample at various temperatures when excited with 405 nm light. Each spectrum has been normalized at its point of maximum intensity. Left inset: magnified portion of selected spectra. Right inset: transmittance of the dye filter used in the experiment.
Fig. 3
Fig. 3 Temperature-dependent shift of peak location (dashed line) and barycenter energy (solid line) of the phosphor’s emission band.
Fig. 4
Fig. 4 Full width at the half magnitude of the emission band at different temperatures.
Fig. 5
Fig. 5 Temperature-dependence of the phosphor’s fluorescence intensity ratio R = I(564nm)/I(λ), where I(λ) is the intensity at the wavelength λ.

Tables (1)

Tables Icon

Table 1 Best fitting results of the temperature-dependent intensity ratios of the phosphor sample. The fitting function is R = A + BT, where R = I(564nm)/I(λ) .

Metrics