Abstract

Strong green and middle infrared (MIR) photoluminescence (PL) has been observed in Er3+: GdVO4 crystal excited by a 488 nm argon laser. Nearly 25 times of magnitude increase of PL intensity has been obtained for both green and MIR emissions under moderate low magnetic field of 4 T. The temperature- and magnetic field- dependent PL demonstrated that both excitation and emission energy transitions have made contributions to the PL enhancement, and stronger PL enhancement usually happens at the transitions with energy levels possessing larger population of electrons. The results are important and encouraging since it not only reveals the originations of the magnetic induced PL enhancement, but also drag people closer to the utilization of magnetic induced PL modulations under moderate low magnetic field.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superexchange interaction contribution to the Zeeman splitting of the intra-4f-shell luminescence band in Gd3Ga4FeO12: Yb3+, Er3+

Liping Tong, Yibo Han, Kun Zhang, Han Gao, Qixin Guo, Tongxiang Fan, and Di Zhang
Opt. Mater. Express 8(11) 3338-3350 (2018)

Magnetic field induced great photoluminescence enhancement in an Er3+:YVO4 single crystal used for high magnetic field calibration

Zong-Wei Ma, Jun-Pei Zhang, Xia Wang, Ying Yu, Jun-Bo Han, Gui-Huan Du, and Liang Li
Opt. Lett. 38(19) 3754-3757 (2013)

Silver nanoparticle enhanced 2.7 µm luminescence in Er3+-doped bismuth germanate glasses

Xiaomeng Jia, Mengling Xia, Yinsheng Xu, Lei Yang, Yan Zhang, Mingming Li, and Shixun Dai
Opt. Mater. Express 8(6) 1625-1632 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
    [Crossref]
  2. L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
    [Crossref]
  3. S. Golab, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Lukasiewicz, and M. Swirkowicz, “Effect of temperature on excitation energy transfer and upconversion phenomena in Er: YVO4 single crystals,” J. Alloys Compd. 323-324, 288–291 (2001).
    [Crossref]
  4. C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
    [Crossref]
  5. D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
    [Crossref]
  6. R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Łukasiewicz, “Effect of temperature on spectroscopic features relevant to laser performance of YVO4: Er3+ and GdVO4: Er3+ crystals,” Opt. Lett. 34, 3271–3273 (2009).
    [Crossref] [PubMed]
  7. C. Brandt, V. Matrosov, K. Petermann, and G. Huber, “In-band fiber-laser-pumped Er: YVO4 laser emitting around 1.6 µ m,” Opt. Lett. 36, 1188–1190 (2011).
    [Crossref] [PubMed]
  8. N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic properties and laser performance of resonantly-pumped cryo-cooled Er3+: GdVO4,” Opt. Express 20, 6080–6084 (2012).
    [Crossref] [PubMed]
  9. N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Efficient, resonantly pumped, room-temperature Er3+: GdVO4 laser,” Opt. Lett. 37, 1151–1153 (2012).
    [Crossref] [PubMed]
  10. N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
    [Crossref]
  11. N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
    [Crossref]
  12. V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
    [Crossref] [PubMed]
  13. L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
    [Crossref]
  14. B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500–1516 (2009).
    [Crossref]
  15. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
    [Crossref]
  16. M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
    [Crossref] [PubMed]
  17. D. Regatos, B. Sepúlveda, D. Fariña, L. G. Carrascosa, and L. M. Lechuga, “Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express 19, 8336–8346 (2011).
    [Crossref] [PubMed]
  18. Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
    [Crossref]
  19. G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
    [Crossref]
  20. Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
    [Crossref]
  21. Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
    [Crossref] [PubMed]
  22. J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
    [Crossref]
  23. Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).
  24. P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
    [Crossref] [PubMed]
  25. J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
    [Crossref]
  26. P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
    [Crossref]
  27. Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
    [Crossref]
  28. Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
    [Crossref]

2015 (4)

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

2014 (2)

Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

2013 (5)

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2010 (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

2009 (4)

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
[Crossref]

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500–1516 (2009).
[Crossref]

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Łukasiewicz, “Effect of temperature on spectroscopic features relevant to laser performance of YVO4: Er3+ and GdVO4: Er3+ crystals,” Opt. Lett. 34, 3271–3273 (2009).
[Crossref] [PubMed]

2008 (1)

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

2004 (1)

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

2003 (1)

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
[Crossref]

2001 (2)

S. Golab, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Lukasiewicz, and M. Swirkowicz, “Effect of temperature on excitation energy transfer and upconversion phenomena in Er: YVO4 single crystals,” J. Alloys Compd. 323-324, 288–291 (2001).
[Crossref]

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

1998 (1)

L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
[Crossref]

1994 (1)

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Andreev, B. A.

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

Armelles, G.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Bertini, C.

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

Brandt, C.

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Brede, R.

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Carrascosa, L. G.

Cavalli, E.

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

Cebollada, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Chai, B. H. T.

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Chen, P.

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Chen, W. B.

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Cheng, Z.

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

Chibotaru, L. F.

L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
[Crossref]

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

Danger, T.

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Dominiak-Dzik, G.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Łukasiewicz, “Effect of temperature on spectroscopic features relevant to laser performance of YVO4: Er3+ and GdVO4: Er3+ crystals,” Opt. Lett. 34, 3271–3273 (2009).
[Crossref] [PubMed]

S. Golab, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Lukasiewicz, and M. Swirkowicz, “Effect of temperature on excitation energy transfer and upconversion phenomena in Er: YVO4 single crystals,” J. Alloys Compd. 323-324, 288–291 (2001).
[Crossref]

Dong, G. P.

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

Driesen, K.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

Du, G. H.

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

Dubinskii, M.

Fariña, D.

Fornasiero, L.

L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
[Crossref]

Fromzel, V.

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Garcia-Martin, J.-M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Golab, S.

S. Golab, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Lukasiewicz, and M. Swirkowicz, “Effect of temperature on excitation energy transfer and upconversion phenomena in Er: YVO4 single crystals,” J. Alloys Compd. 323-324, 288–291 (2001).
[Crossref]

Görller-Walrand, C.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

Gredin, P.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

Gregorkiewicz, T.

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
[Crossref]

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

Guo, W. W.

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Han, J. B.

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

Han, Y. B.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

Hao, Z. H.

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

He, H. L.

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

Heumann, E.

L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
[Crossref]

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Hu, B.

M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
[Crossref] [PubMed]

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500–1516 (2009).
[Crossref]

Huber, G.

C. Brandt, V. Matrosov, K. Petermann, and G. Huber, “In-band fiber-laser-pumped Er: YVO4 laser emitting around 1.6 µ m,” Opt. Lett. 36, 1188–1190 (2011).
[Crossref] [PubMed]

L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
[Crossref]

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Ivanov, I.

M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
[Crossref] [PubMed]

Jia, H.

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

Kan, X. Y.

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

Koetke, J.

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

Krasil’nik, Z. F.

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
[Crossref]

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

Lechuga, L. M.

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Li, L.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

Lisiecki, R.

Liu, P.

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Liu, X. F.

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

Liu, Z. L.

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Lukasiewicz, T.

Ma, Z. W.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

Magnani, N.

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

Matrosov, V.

Mortier, M.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

Moshchalkov, V. V.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
[Crossref]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

Pan, H.

M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
[Crossref] [PubMed]

Peng, Q.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

Petermann, K.

C. Brandt, V. Matrosov, K. Petermann, and G. Huber, “In-band fiber-laser-pumped Er: YVO4 laser emitting around 1.6 µ m,” Opt. Lett. 36, 1188–1190 (2011).
[Crossref] [PubMed]

L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
[Crossref]

Przybylinska, H.

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
[Crossref]

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

Qiu, J. R.

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Regatos, D.

Ryba-Romanowski, W.

Sang, X. W.

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Saurel, D.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
[Crossref]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

Sepúlveda, B.

Shao, M.

M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
[Crossref] [PubMed]

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500–1516 (2009).
[Crossref]

Shi, J.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

Solarz, P.

Swirkowicz, M.

S. Golab, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Lukasiewicz, and M. Swirkowicz, “Effect of temperature on excitation energy transfer and upconversion phenomena in Er: YVO4 single crystals,” J. Alloys Compd. 323-324, 288–291 (2001).
[Crossref]

Tang, C. Q.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Ter-Gabrielyan, N.

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Tikhomirov, V. K.

L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
[Crossref]

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

Toncelli, A.

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

Tonelli, M.

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

Vinh, N. Q.

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
[Crossref]

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

Wang, D.

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

Wang, Q. Q.

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

Wang, S. L.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

Wang, X.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

Wang, Y. L.

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Xiao, Q. L.

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

Xu, B. B.

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Yan, L.

M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
[Crossref] [PubMed]

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500–1516 (2009).
[Crossref]

Yao, K. L.

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Yu, Y.

Zhang, J. P.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+: YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38, 3754–3757 (2013).
[Crossref] [PubMed]

Zhang, Y. H.

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

Zhong, Z. Q.

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

Zhou, Y. L.

Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

Adv. Mater. (2)

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500–1516 (2009).
[Crossref]

M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, “Giant magnetic field effects on electroluminescence in electrochemical cells,” Adv. Mater. 23, 2216–2220 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, “Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals,” Angew. Chem. Int. Ed. 52, 4366–4369 (2013).
[Crossref]

Appl. Phys. Lett. (1)

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glassceramics in magnetic fields up to 50 t,” Appl. Phys. Lett. 92, 171101(2008).
[Crossref]

J. Alloys Compd. (1)

S. Golab, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Lukasiewicz, and M. Swirkowicz, “Effect of temperature on excitation energy transfer and upconversion phenomena in Er: YVO4 single crystals,” J. Alloys Compd. 323-324, 288–291 (2001).
[Crossref]

J. Appl. Phys. (4)

T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
[Crossref]

L. F. Chibotaru, V. K. Tikhomirov, D. Saurel, and V. V. Moshchalkov, “Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics,” J. Appl. Phys. 106, 053502 (2009).
[Crossref]

J. P. Zhang, X. Wang, Z. Q. Zhong, Z. W. Ma, S. L. Wang, Y. B. Han, J. B. Han, L. Li, and C. Q. Tang, “Magnetic field induced extraordinary photoluminescence enhancement in Er3+: YVO4 single crystal,” J. Appl. Phys. 118, 083101 (2015).
[Crossref]

Y. L. Wang, J. P. Zhang, J. B. Han, Z. H. Hao, and Q. Q. Wang, “High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4,” J. Appl. Phys. 117, 083903 (2015).
[Crossref]

J. Low Temp. Phys. (1)

Y. B. Han, G. H. Du, J. B. Han, X. Y. Kan, and L. Li, “Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by zeeman splitting in pulsed high magnetic fields,” J. Low Temp. Phys. 170, 430–435 (2013).
[Crossref]

J. Lumin. (2)

J. P. Zhang, Z. W. Ma, J. B. Han, G. H. Du, Y. L. Zhou, L. Li, and Z. Cheng, “Absorption induced photoluminescence intensity modulation of Er3+: YVO4 single crystal under pulsed high magnetic field,” J. Lumin. 144, 53–56 (2013).
[Crossref]

C. Bertini, A. Toncelli, M. Tonelli, E. Cavalli, and N. Magnani, “Optical spectroscopy and laser parameters of GdVO4: Er3+,” J. Lumin. 106, 235–242 (2004).
[Crossref]

J. Mater. Chem. C (2)

G. H. Du, P. Liu, W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, and K. L. Yao, “The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals,” J. Mater. Chem. C 1, 7608–7613 (2013).
[Crossref]

Y. H. Zhang, Q. L. Xiao, H. L. He, J. P. Zhang, G. P. Dong, J. B. Han, and J. R. Qiu, “Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals,” J. Mater. Chem. C,  3, 10140 (2015).
[Crossref]

J. Mol. Struct. (1)

Y. L. Zhou, X. Wang, J. P. Zhang, and J. B. Han, “Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal,” J. Mol. Struct. 186–190, 1065–1066 (2014).

J. Phys. Chem. C (1)

P. Chen, H. Jia, J. P. Zhang, J. B. Han, X. F. Liu, and J. R. Qiu, “Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles,” J. Phys. Chem. C 119, 5583–5588 (2015).
[Crossref]

Nano Lett. (1)

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er3+-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9, 721–724 (2009).
[Crossref] [PubMed]

Nanoscale (1)

P. Chen, J. P. Zhang, B. B. Xu, X. W. Sang, W. B. Chen, X. F. Liu, J. B. Han, and J. R. Qiu, “Lanthanide doped nanoparticles as remote sensors for magnetic fields,” Nanoscale,  6, 11002 (2014).
[Crossref] [PubMed]

Nature Photon. (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photon. 4, 107–111 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 µ m,” Opt. Mater. 10, 9–17 (1998).
[Crossref]

Physica B (1)

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, B. A. Andreev, and T. Gregorkiewicz, “Observation of zeeman effect in photoluminescence of Er3+ ion imbedded in crystalline silicon,” Physica B 308–310, 340–343 (2001).
[Crossref]

Physica E (1)

N. Q. Vinh, H. Przybylińska, Z. F. Krasil’nik, and T. Gregorkiewicz, “Magneto-optical study of Er3+-related center in selectively doped si:er,” Physica E 13, 544–546 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental setup for PL measurement under pulsed magnetic field. The bottom-left inset shows the time relation of the magnetic pulse and CCD synchronization output pulse sequence, while the bottom-right one gives the zoom in picture of the optics probe inside the magnet.
Fig. 2
Fig. 2 Absorption and PL spectra of Er3+: GdVO4 crystal. (a) Absorption spectrum of Er3+: GdVO4 crystal taken at room temperature, several absorption peaks including a 490 nm absorption band could be observed. The inset is the detailed spectrum of the 490 absorption band taken at 80 K, at least four sub-absorption peaks could be clearly recognized. (b) PL spectra of green emission band (4S3/24I15/2 transition) and MIR emission band (4I13/24I15/2 transition) from Er3+: GdVO4 crystal taken at 80 K.
Fig. 3
Fig. 3 Magnetic field dependent PL spectra Er3+: GdVO4 crystal obtained at 80 K. (a) is the green PL emissions, (b) is the MIR PL emissions. Both of the two series of PL spectra were taken under a single pulsed magnetic field up to 7 T at the same time by using a VI CCD spectrometer and a MIR spectrometer.
Fig. 4
Fig. 4 Magnetic field dependent VI and MIR PL emission behaviors. (a) PL enhancement factor as functions of magnetic field for the green PL emissions at the temperature from 4.2 K to 300 K. (b) PL enhancement factor as functions of magnetic field for the MIR PL emissions at the temperature from 4.2 K to 300 K. (c) Positions of the enhancement peaks versus temperature.
Fig. 5
Fig. 5 (a) Normalized PL enhancement factor (VI and MIR enhancement factor both divided the maximum value of f with VI emission band at corresponding temperatures) as functions of magnetic field at the temperature from 4.2 K to 300 K. The solid lines represent the data of MIR PL, while the dash line is the one for green PL. (b) Full width at half maximum (FWHM) of the enhancement peaks versus temperature. (c) Temperature dependent peak area ratios of f for MIR and VI emissions, the dots are experimental data, while the solid lines are calculated ones (Pr) for energy levels of 0 cm−1 and 40 cm−1, respectively.
Fig. 6
Fig. 6 Schematic diagram of energy level and transition for Er3+ in GdVO4 crystal. Wathet arrows indicate exciting transitions. Green and dark red arrows indicate the radiative transitions. Dark black and gray wave arrows indicate assistant exciting transitions and nonradiative transitions, respectively.

Metrics