Abstract

The formation of stable phase reflection holograms in highly-concentrated phenanthrenequinone - polymethylmethacrylate (PQ-PMMA) layers with a thickness of about 100 µm at 532 nm recording wavelength has been investigated. In spite of the low absorbance of the photosensitive material at the long wave edge of the absorption spectrum, a refractive index modulation of 4.2·10−4 close to the practically reachable limit was achieved during the optical recording. Quantitative investigation of thermal and light treatment of the recorded holograms has demonstrated a tenfold increase of the diffraction efficiency (up to 60%) without disturbing the angular selectivity profile.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiplexed holograms in phenanthrenequinone–polymethylmethacrylate composite for microscopic applications

Alexandra Trofimova, Sergey Nazarov, Alexei Tolstik, Uladzimir Mahilniy, Elen Tolstik, and Rainer Heintzmann
Opt. Mater. Express 7(5) 1446-1452 (2017)

Highly efficient volume hologram multiplexing in thick dye-doped jelly-like gelatin

Vasili M. Katarkevich, Anatoli N. Rubinov, and Terlan Sh. Efendiev
Opt. Lett. 39(15) 4627-4630 (2014)

Crossed-gratings volume hologram: backward reflection with high angular and spectral selectivity

C.-C. Tsai, B. Ya. Zeldovich, L. B. Glebov, and S. Frederick
Opt. Express 14(21) 9558-9563 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
    [Crossref]
  2. A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
    [Crossref]
  3. R.I. Billmers, E.J. Billmers, R. Burzynski, J.F. Weibel, L.H.I. Heverley, M.K. Casstevens, T.P. Curran, and V.M. Contarino, “Narrow-band holographic optical filter using thick efficient holographic gratings,” Proc. SPIE 4659 Practical Holography XVI and Holographic Materials VIII, 156 (2002).
    [Crossref]
  4. R. K. Kostuk, W. Maeda, C. H. Chen, I. Djordjevic, and B. Vasic, “Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications,” Appl. Opt. 44(35), 7581–7586 (2005).
    [Crossref] [PubMed]
  5. U.V. Mahilny, D.N. Marmysh, A.L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone–PMMA media,” J. Opt. A: Pure Appl. Opt. 10, 085302, 7pp (2008).
    [Crossref]
  6. E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
    [Crossref]
  7. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
    [Crossref]
  8. H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).
  9. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
    [Crossref]
  10. E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
    [Crossref] [PubMed]
  11. E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19(3), 2739–2747 (2011).
    [Crossref] [PubMed]
  12. S.H. Lin, M. Gruber, Y.N. Hsiao, and K.Y. Hsu, “Holographic data storage in low-shrinkage doped photopolymer,” Adv. Inform. Optics and Photonics, 317 (2008).
    [Crossref]
  13. S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A. 11(2), 024012 (2009).
    [Crossref]
  14. J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
    [Crossref]
  15. A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone–polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
    [Crossref]
  16. A. Kuboyama, F. Kobayashi, and S. Morokuma, “Studies of the π→π* absorption bands of 9,10-phenanthrenequinone,” Bull. Chem. Soc. Jpn. 48(7), 2145–2148 (1975).
    [Crossref]
  17. D. M. Togashi and D. E. Nicodem, “Photophysical studies of 9,10-phenanthrenequinones,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(13), 3205–3212 (2004).
    [Crossref] [PubMed]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  19. S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A, Pure Appl. Opt. 2(3), 188–195 (2000).
    [Crossref]
  20. D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, “Transformation of holographic gratings in polymer layers containing phenanthrenequinone,” Bull. Russ. Acad. Sci., Physics 70(12), 2056–2060 (2006).
  21. M. SeGall, D. Ott, I. Divliansky, and L. B. Glebov, “Effect of aberrations in a holographic system on reflecting volume Bragg gratings,” Appl. Opt. 52(32), 7826–7831 (2013).
    [Crossref] [PubMed]

2014 (2)

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
[Crossref] [PubMed]

2013 (2)

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

M. SeGall, D. Ott, I. Divliansky, and L. B. Glebov, “Effect of aberrations in a holographic system on reflecting volume Bragg gratings,” Appl. Opt. 52(32), 7826–7831 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (1)

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

2009 (3)

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone–polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A. 11(2), 024012 (2009).
[Crossref]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

2007 (1)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

2006 (2)

D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, “Transformation of holographic gratings in polymer layers containing phenanthrenequinone,” Bull. Russ. Acad. Sci., Physics 70(12), 2056–2060 (2006).

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

2005 (1)

2004 (1)

D. M. Togashi and D. E. Nicodem, “Photophysical studies of 9,10-phenanthrenequinones,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(13), 3205–3212 (2004).
[Crossref] [PubMed]

2000 (2)

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A, Pure Appl. Opt. 2(3), 188–195 (2000).
[Crossref]

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

1975 (1)

A. Kuboyama, F. Kobayashi, and S. Morokuma, “Studies of the π→π* absorption bands of 9,10-phenanthrenequinone,” Bull. Chem. Soc. Jpn. 48(7), 2145–2148 (1975).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Akbari, H.

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

Ashcheulov, Y.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Chen, C. H.

Cimo, P.

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

Divliansky, I.

Djordjevic, I.

Flory, F.

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A, Pure Appl. Opt. 2(3), 188–195 (2000).
[Crossref]

Garner, S. M.

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

Glebov, L. B.

Hsiao, Y.-N.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A. 11(2), 024012 (2009).
[Crossref]

Hsu, K. Y.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A. 11(2), 024012 (2009).
[Crossref]

Huguet-Chantôme, P.

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A, Pure Appl. Opt. 2(3), 188–195 (2000).
[Crossref]

Jiang, Y.

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

Kashin, O.

Kobayashi, F.

A. Kuboyama, F. Kobayashi, and S. Morokuma, “Studies of the π→π* absorption bands of 9,10-phenanthrenequinone,” Bull. Chem. Soc. Jpn. 48(7), 2145–2148 (1975).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kostuk, R. K.

Kowarschik, R.

E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
[Crossref] [PubMed]

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19(3), 2739–2747 (2011).
[Crossref] [PubMed]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

Krul, L. P.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

Kuboyama, A.

A. Kuboyama, F. Kobayashi, and S. Morokuma, “Studies of the π→π* absorption bands of 9,10-phenanthrenequinone,” Bull. Chem. Soc. Jpn. 48(7), 2145–2148 (1975).
[Crossref]

Lapushka, K.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Lin, S. H.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A. 11(2), 024012 (2009).
[Crossref]

Luo, S.

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

Maeda, W.

Mahilny, U. V.

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

Marmysh, D. N.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, “Transformation of holographic gratings in polymer layers containing phenanthrenequinone,” Bull. Russ. Acad. Sci., Physics 70(12), 2056–2060 (2006).

Martin, S.

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

Matusevich, V.

E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
[Crossref] [PubMed]

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19(3), 2739–2747 (2011).
[Crossref] [PubMed]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

Matusevich, Yu. I.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

Mogil’nyi, V. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone–polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

Mogilny, V. V.

D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, “Transformation of holographic gratings in polymer layers containing phenanthrenequinone,” Bull. Russ. Acad. Sci., Physics 70(12), 2056–2060 (2006).

Monneret, S.

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A, Pure Appl. Opt. 2(3), 188–195 (2000).
[Crossref]

Morokuma, S.

A. Kuboyama, F. Kobayashi, and S. Morokuma, “Studies of the π→π* absorption bands of 9,10-phenanthrenequinone,” Bull. Chem. Soc. Jpn. 48(7), 2145–2148 (1975).
[Crossref]

Naydenova, I.

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

Nicodem, D. E.

D. M. Togashi and D. E. Nicodem, “Photophysical studies of 9,10-phenanthrenequinones,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(13), 3205–3212 (2004).
[Crossref] [PubMed]

Novikov, I.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Ott, D.

Persechini, L.

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

Ponosov, Y.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Popov, A.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Romanov, O.

SeGall, M.

Stankevich, A. I.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone–polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

Sun, X.

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

Togashi, D. M.

D. M. Togashi and D. E. Nicodem, “Photophysical studies of 9,10-phenanthrenequinones,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(13), 3205–3212 (2004).
[Crossref] [PubMed]

Tolstik, A.

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

Tolstik, E.

Tolstik, E. A.

D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, “Transformation of holographic gratings in polymer layers containing phenanthrenequinone,” Bull. Russ. Acad. Sci., Physics 70(12), 2056–2060 (2006).

Trofimova, A. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone–polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

Vasic, B.

Veniaminov, A.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Veniaminov, A. V.

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

Wang, J.

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

Winkler, A.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

Zyuzin, I.

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

A. Kuboyama, F. Kobayashi, and S. Morokuma, “Studies of the π→π* absorption bands of 9,10-phenanthrenequinone,” Bull. Chem. Soc. Jpn. 48(7), 2145–2148 (1975).
[Crossref]

Bull. Russ. Acad. Sci., Physics (1)

D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, “Transformation of holographic gratings in polymer layers containing phenanthrenequinone,” Bull. Russ. Acad. Sci., Physics 70(12), 2056–2060 (2006).

IEEE Photonics Technol. Lett. (1)

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ Photopolymers for Head-Up-Displays,” IEEE Photonics Technol. Lett. 21(10), 784–786 (2009).
[Crossref]

Int. J. Polym. Sci. (1)

H. Akbari, I. Naydenova, L. Persechini, S. M. Garner, P. Cimo, and S. Martin, “Diffractive optical elements with a large angle of operation recorded in acrylamide based photopolymer on flexible substrates,” Int. J. Polym. Sci. 2014, 918285 (2014).

J. Appl. Spectrosc. (1)

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone–polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76(4), 585–591 (2009).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A, Pure Appl. Opt. 2(3), 188–195 (2000).
[Crossref]

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, “Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification,” J. Opt. A, Pure Appl. Opt. 2(5), 494–499 (2000).
[Crossref]

J. Opt. A. (1)

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A. 11(2), 024012 (2009).
[Crossref]

Opt. Commun. (1)

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

Opt. Express (2)

Opt. Spectrosc. (1)

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

Proc. SPIE (1)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glassy polymeric material as coupling elements of planar lightguides,” Proc. SPIE 6733, 673324 (2007).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

D. M. Togashi and D. E. Nicodem, “Photophysical studies of 9,10-phenanthrenequinones,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(13), 3205–3212 (2004).
[Crossref] [PubMed]

Other (3)

R.I. Billmers, E.J. Billmers, R. Burzynski, J.F. Weibel, L.H.I. Heverley, M.K. Casstevens, T.P. Curran, and V.M. Contarino, “Narrow-band holographic optical filter using thick efficient holographic gratings,” Proc. SPIE 4659 Practical Holography XVI and Holographic Materials VIII, 156 (2002).
[Crossref]

U.V. Mahilny, D.N. Marmysh, A.L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone–PMMA media,” J. Opt. A: Pure Appl. Opt. 10, 085302, 7pp (2008).
[Crossref]

S.H. Lin, M. Gruber, Y.N. Hsiao, and K.Y. Hsu, “Holographic data storage in low-shrinkage doped photopolymer,” Adv. Inform. Optics and Photonics, 317 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Absorption spectrum of unexposed PQ-PMMA layer (1) of 100 µm thickness and spectra after uniform laser irradiation (λ = 532 nm) with exposure dose of 100 (2) and 200 (3) J·cm−2.
Fig. 2
Fig. 2 Scheme of PQ photoproducts attachment to the polymer matrix.
Fig. 3
Fig. 3 Basic scheme of the hologram recording.
Fig. 4
Fig. 4 The scheme of hologram’s diffraction efficiency measurements (a) and optical path of probing beam in the sample (b).
Fig. 5
Fig. 5 Geometry of interfering beams formed in the scheme of holograms recording.
Fig. 6
Fig. 6 The dependence of the grating diffraction efficiency on exposure time (light irradiance of 120 mW·cm−2).
Fig. 7
Fig. 7 Kinetics of diffraction efficiency changing upon stepwise heating: dark (at 20 °C) amplification in a day (1), at 50 (2), 60 (3), 70 (4) and 80 (5) °C (a) and continuous heating at 70 °C (b).
Fig. 8
Fig. 8 The dark kinetics of incidence angle of probing beam corresponding to maximal diffraction efficiency in the course of hologram cooling.
Fig. 9
Fig. 9 Experimental (dots) and theoretical (lines) curves of angular selectivity of the gratings for different incidence angles of activating light: 0° (a), 5° (b), 10° (c) and 15° (d), normalized on the maximum diffraction efficiency value of ~60%.
Fig. 10
Fig. 10 Absorption spectra of PQ-PMMA thin layer with reflection grating before (1) and after (2) irradiation with LED lamp.

Tables (1)

Tables Icon

Table 1 Results of geometry analysis

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η= I 1 I 1 + I 0 ,
Δn= λcos( θ 0 ) πl arcth( η ),
sin( α 0 )= n g sin( β 0 )=nsin( θ 0 )
γ= θ S θ R 2 ,
2dcos( θ R +γ)= λ rec n ,
Δn= n 2 +2 6n Δ C p ΔR,
η= { 1+ 1 ξ 2 / ν 2 sin h 2 ( ν 2 ξ 2 ) } 1
ν= iπΔnl λ prob cos(θ)(cos(θ) λ prob nd cos(γ))
ξ= υl 2( cos(θ) λ prob nd cos(γ) ) ,
υ=Δθ 2π d sin(θ+γ),

Metrics