Abstract

A new type of periodic nanostructuring, including melting droplet arrays, ablated grid arrays, and ultra-fine periodic surface structures, was produced during the interaction between femtosecond laser pulses and silicon. The co-existence of these nano-patterns as well as sharp transitions between them were observed along the scan tracks. Physical processes such as ultrafast melting, material ablation, and thermal melting are associated with these nanostructures. Coulomb explosion, interference, and local field arrangement are proposed as the possible mechanisms underlying this new nano-patterning process.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Genesis of femtosecond-induced nanostructures on solid surfaces

Olga Varlamova, Christian Martens, Markus Ratzke, and Juergen Reif
Appl. Opt. 53(31) I10-I15 (2014)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 363688–3689 (1965).
    [Crossref]
  2. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
    [Crossref]
  3. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
    [Crossref]
  4. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
    [Crossref]
  5. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010).
    [Crossref]
  6. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicone,” J. Micromech. Microeng. 16, 1080 (2006).
    [Crossref]
  7. A. Vorobyev and C. L. Guo, “Coloring metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
    [Crossref]
  8. M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
    [Crossref]
  9. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
    [Crossref]
  10. Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
    [Crossref]
  11. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106104910 (2009).
    [Crossref]
  12. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32, 1932–1934 (2007).
    [Crossref] [PubMed]
  13. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref] [PubMed]
  14. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev. 2, 26–46 (2008).
    [Crossref]
  15. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20, 4389–4396 (2012).
    [Crossref] [PubMed]
  16. F. Liang, R. Vallée, and S. L. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express 2, 900–906 (2012).
    [Crossref]
  17. F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
    [Crossref]
  18. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
    [Crossref]
  19. C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
    [Crossref]
  20. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its application,” Laser & Photon. Rev. 7, 385–407 (2013).
    [Crossref]
  21. J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, and T.M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express,  20, 905 (2012).
    [Crossref] [PubMed]
  22. L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34, 1846 (2009).
    [Crossref] [PubMed]
  23. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
    [Crossref]
  24. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36, 229 (2011).
    [Crossref] [PubMed]
  25. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quant. Electron. 38, 119 (2014).
    [Crossref]
  26. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
    [Crossref]
  27. H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
    [Crossref]
  28. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
    [Crossref]
  29. H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333 (2006).
    [Crossref]
  30. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
    [Crossref] [PubMed]
  31. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
    [Crossref] [PubMed]
  32. S. I. Kudryashov and V. I. Emel’yanov, “Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse,” JETP Letters 73, 228 (2001).
    [Crossref]
  33. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
    [Crossref] [PubMed]

2015 (1)

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

2014 (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quant. Electron. 38, 119 (2014).
[Crossref]

2013 (2)

C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its application,” Laser & Photon. Rev. 7, 385–407 (2013).
[Crossref]

2012 (4)

2011 (1)

2010 (2)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010).
[Crossref]

2009 (2)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106104910 (2009).
[Crossref]

L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34, 1846 (2009).
[Crossref] [PubMed]

2008 (3)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev. 2, 26–46 (2008).
[Crossref]

A. Vorobyev and C. L. Guo, “Coloring metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

2007 (1)

2006 (2)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicone,” J. Micromech. Microeng. 16, 1080 (2006).
[Crossref]

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333 (2006).
[Crossref]

2005 (2)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[Crossref]

2003 (3)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[Crossref]

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

2001 (3)

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

S. I. Kudryashov and V. I. Emel’yanov, “Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse,” JETP Letters 73, 228 (2001).
[Crossref]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

2000 (1)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[Crossref]

1998 (2)

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

1991 (1)

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 363688–3689 (1965).
[Crossref]

Ashkenasi, D.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Audebert, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Baba, M.

Balcou, Ph.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Betz, G.

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333 (2006).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 363688–3689 (1965).
[Crossref]

Bloembergen, N.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

Blome, C.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106104910 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[Crossref]

Bouchard, J.

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quant. Electron. 38, 119 (2014).
[Crossref]

Campbell, E.E.B.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Chen, X. L.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Chin, S. L.

Dachraoui, H.

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333 (2006).
[Crossref]

Dai, Q.-F.

Delaporte, Ph.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

Dietrich, C.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Dörr, D.

Emel’yanov, V. I.

S. I. Kudryashov and V. I. Emel’yanov, “Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse,” JETP Letters 73, 228 (2001).
[Crossref]

Epple, M.

Etienne, H.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Fang, R. C.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

Förster, E.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Fourmaux, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Ganeev, R. A.

Gauthier, J.C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Geindre, J.P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Gopal, A.V.

Grillon, G.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its application,” Laser & Photon. Rev. 7, 385–407 (2013).
[Crossref]

Guo, C. L.

A. Vorobyev and C. L. Guo, “Coloring metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

Halbwax, M.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[Crossref]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev. 2, 26–46 (2008).
[Crossref]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

Horn von Hoegen, M.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Huang, M.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Hulin, D.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Husinsky, W.

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333 (2006).
[Crossref]

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quant. Electron. 38, 119 (2014).
[Crossref]

Kammler, M.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106104910 (2009).
[Crossref]

Kudryashov, S. I.

S. I. Kudryashov and V. I. Emel’yanov, “Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse,” JETP Letters 73, 228 (2001).
[Crossref]

Kuroda, H.

R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Lan, S.

Le Harzic, R.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Liang, F.

Liao, Y.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Liu, H.-Y.

Lysak, T. M.

C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
[Crossref]

Lysak, T.M.

Ma, Y. R.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Malzer, S.

Martinuzzi, S.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quant. Electron. 38, 119 (2014).
[Crossref]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[Crossref]

Namba, Y.

Neumeier, M.

Nishii, K.

Ozaki, T.

Perichaud, I.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Qi, L.

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Rischel, C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106104910 (2009).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Rousse, A.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Saeta, P.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

Sarnet, T.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Sauer, D.

Sebban, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Sentis, M.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Siegal, Y.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev. 2, 26–46 (2008).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Squier, J.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Stoian, R.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[Crossref]

Stracke, F.

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[Crossref]

Tan, B.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicone,” J. Micromech. Microeng. 16, 1080 (2006).
[Crossref]

Tarasevitch, A.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev. 2, 26–46 (2008).
[Crossref]

Torregrosa, F.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Trofimov, V. A.

C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
[Crossref]

Trofimov, V.A.

Uschmann, I.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Vallée, R.

Van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Varel, H.

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Venkatakrishnan, K.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicone,” J. Micromech. Microeng. 16, 1080 (2006).
[Crossref]

Vervisch, V.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Vorobyev, A.

A. Vorobyev and C. L. Guo, “Coloring metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its application,” Laser & Photon. Rev. 7, 385–407 (2013).
[Crossref]

Wähmer, M.

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Wang, C.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Wang, J.-K.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

Wang, K.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Wang, L. J.

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

Wu, L.-J.

Wu, Q. H.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Yao, J.

C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
[Crossref]

Yao, J.-W.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Yu, Q. X.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

Zhang, C. Y.

C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
[Crossref]

Zhang, C.-Y.

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

Zhao, Q. Z.

Zimmermann, H.

Appl. Phys. A (1)

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333 (2006).
[Crossref]

Appl. Phys. Lett. (5)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[Crossref]

A. Vorobyev and C. L. Guo, “Coloring metals with femtosecond laser pulses,” Appl. Phys. Lett. 92, 041914 (2008).
[Crossref]

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82, 1703–1705 (2003).
[Crossref]

F. Liang, J. Bouchard, S. L. Chin, and R. Vallée, “Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses,” Appl. Phys. Lett. 107, 061903 (2015).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673 (1998). –
[Crossref]

Appl. Surf. Sci. (1)

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E.E.B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

J. Appl. Phys. (3)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106104910 (2009).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 363688–3689 (1965).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Micromech. Microeng. (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicone,” J. Micromech. Microeng. 16, 1080 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Letters (1)

S. I. Kudryashov and V. I. Emel’yanov, “Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse,” JETP Letters 73, 228 (2001).
[Crossref]

Laser & Photon. Rev. (2)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its application,” Laser & Photon. Rev. 7, 385–407 (2013).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev. 2, 26–46 (2008).
[Crossref]

Nanotechnology (1)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulses irradiations,” Nanotechnology 21, 75304 (2010).
[Crossref]

Nature (1)

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65 (2001).
[Crossref] [PubMed]

Opt. Comm. (1)

C. Y. Zhang, J. Yao, S. Lan, V. A. Trofimov, and T. M. Lysak, “Effect of plasma confinement on the femtosecond laser ablation of silicon,” Opt. Comm. 30854–63 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (3)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Phys. Rev. Lett. (3)

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 671023 (1991).
[Crossref] [PubMed]

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “Femtosecond X-Ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Prog. Quant. Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quant. Electron. 38, 119 (2014).
[Crossref]

Thin solid films (1)

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin solid films 516, 6791–6795 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Type I structure induced by 800 nm laser for Ep = 44 nJ (0.31 J/cm2) on the surface of silicon. (b) Transition from stationary to moving for ES. (c) Transition from stationary to moving for ES. (d) Transition from the Type I structure to mixed grid array and the type II structure. The scale bar on the bottom left is for (a), the one on the bottom right is for (b) to (d). Neff is the effective pulse number. (b–d) Ep = 38 nJ (0.27 J/cm2).
Fig. 2
Fig. 2 Melting droplet array formation by 800 nm laser with Ep = 38 nJ (0.27 J/cm2) for different overlap of pulse number. The curved and straight dashed lines in (a) and (c) are given as guides to the eye. They indicate the regular distribution of the droplets. The nanostructures inside the ellipses in (b) and (d) are the type II structure, but the one in the rectangle in (b) is a type I structure at its initial stage. The inset shows the shot-to-shot evolution pattern of the type I structure at 22 shots. (c) and (d) are the tilted views at 52°, the real width of the nanostructures in vertical direction should be divided by a factor of cos(52°). The scale bar is for all the images except the inset.
Fig. 3
Fig. 3 (a–e) Formation of melting droplet array, (f) grid array and (g) type II structure. (b) is the tilted view of (a). (c) is the blow-up of (b). The scale bar is for (a), and (d) to (g).
Fig. 4
Fig. 4 Formation of the type III structure by 800 nm laser. Mixing of the droplets and the structure of type III (a) and type II (b). (c) Mixing of the grid array and the type III structure. (d) The type III structure. The scale bar is for all the images. Note that the slightly lower pulse fluence than the previous case is very likely due to the uncertainty of the alignment.
Fig. 5
Fig. 5 type I and type II structures formed by 1550 nm laser. The scale bar on the bottom left is for (a), (c) and (e), and the one on the bottom right is for (b), (d) and (f).

Tables (1)

Tables Icon

Table 1 Overview of nanostructuring with 800 nm laser in terms of respective parameters and underlying physical mechanisms (d refers to pulse-to-pulse spacing, Λ is period).

Metrics