Abstract

A multi-layer MoS2-based saturable absorber (SA) enables Q-switched operation of Yb and Tm microchip lasers. The saturation intensity of MoS2-SA is determined to be about ~0.5 MW/cm2. The Q-switched Tm laser generated 1.27 W at 1929 nm with a slope efficiency of 43% and conversion efficiency with respect to the continuous-wave mode as high as 81%. The pulse characteristics were 175 ns / 7.5 µJ corresponding to a repetition rate of 170 kHz. With the Q-switched Yb laser, 220 ns / 0.5 µJ pulses were achieved at 1030 nm. We show that using MoS2-SA at ~2 μm is advantageous as compared to multi-layer graphene. We also prove that MoS2-SA is more efficient at ~2 μm compared to ~1 μm due to a lower saturation intensity and higher fraction of the saturable loss.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber

J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz
Appl. Opt. 55(14) 3757-3763 (2016)

Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber

Josep Maria Serres, Pavel Loiko, Xavier Mateos, Konstantin Yumashev, Uwe Griebner, Valentin Petrov, Magdalena Aguiló, and Francesc Díaz
Opt. Express 23(11) 14108-14113 (2015)

Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser

Pavel Loiko, Jakub Bogusławski, Josep Maria Serres, Esrom Kifle, Maciej Kowalczyk, Xavier Mateos, Jarosław Sotor, Rafał Zybała, Krzysztof Mars, Andrzej MikuŁa, Kamil Kaszyca, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Mater. Express 8(7) 1723-1732 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C 116(16), 8983–8999 (2012).
    [Crossref]
  2. A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984).
  3. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  4. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  5. K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
    [Crossref] [PubMed]
  6. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
    [Crossref] [PubMed]
  7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  8. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  9. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
    [Crossref] [PubMed]
  10. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [Crossref] [PubMed]
  11. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  12. Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
    [Crossref]
  13. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
    [Crossref] [PubMed]
  14. Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
    [Crossref]
  15. Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
    [Crossref]
  16. F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3(2), A25–A29 (2015).
    [Crossref]
  17. B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
    [Crossref] [PubMed]
  18. P. Ge, J. Liu, S. Jiang, Y. Xu, and B. Man, “Compact Q-switched 2 μm Tm:GdVO4 laser with MoS2 absorber,” Photon. Res. 3(5), 256–259 (2015).
    [Crossref]
  19. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
    [Crossref] [PubMed]
  20. T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
    [Crossref]
  21. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.
  22. T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
    [Crossref]
  23. J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  24. N. T. McDevitt, J. S. Zabinski, M. S. Donley, and J. E. Bultman, “Disorder-induced low-frequency Raman band observed in deposited MoS2 films,” Appl. Spectrosc. 48(6), 733–736 (1994).
    [Crossref]
  25. J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
    [Crossref] [PubMed]
  26. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
    [Crossref]
  27. P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
    [Crossref]
  28. V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  29. F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
    [Crossref]
  30. L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photon. Res. 3(2), A47–A50 (2015).
    [Crossref]
  31. C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  32. T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
    [Crossref]
  33. P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
    [Crossref]
  34. J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
    [Crossref]
  35. J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
    [Crossref]
  36. Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
    [Crossref]
  37. H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
    [Crossref] [PubMed]

2016 (2)

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

2015 (10)

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photon. Res. 3(2), A47–A50 (2015).
[Crossref]

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3(2), A25–A29 (2015).
[Crossref]

P. Ge, J. Liu, S. Jiang, Y. Xu, and B. Man, “Compact Q-switched 2 μm Tm:GdVO4 laser with MoS2 absorber,” Photon. Res. 3(5), 256–259 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

2014 (8)

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

2013 (3)

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

2012 (1)

C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C 116(16), 8983–8999 (2012).
[Crossref]

2010 (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

2007 (1)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

2002 (2)

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

2000 (1)

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

1994 (2)

Aguiló, M.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Arimoto, Y.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Ataca, C.

C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C 116(16), 8983–8999 (2012).
[Crossref]

Bao, Q. L.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bultman, J. E.

Burns, P. A.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

Cai, Z.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Chen, H.

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Chen, R.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Chen, Y.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Cheng, Y.

Chim, C.-Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Choi, S. Y.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Chu, H.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Ciraci, S.

C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C 116(16), 8983–8999 (2012).
[Crossref]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Dawes, J. M.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

Dekker, P.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

Di Lieto, A.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

Díaz, F.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Dill Iii, C.

Donley, M. S.

Du, J.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Duan, L.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Fan, D. Y.

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Feng, T. L.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Gao, S.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Ge, P.

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Griebner, U.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Guo, Z. N.

Han, S.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Hara, H.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

He, J.

He, K.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hou, J.

Hu, W.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Huang, Y.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Izawa, J.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Jia, Z.

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Jiang, G.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Jiang, S.

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kim, M. H.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Kong, L.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Kong, L. C.

Kuleshov, N.

Kurimura, S.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Lan, C.

Lan, R.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Lee, C.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Li, C.

Li, D. C.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Li, G. Q.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Li, H.

Li, J.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Li, L.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Li, Y.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Lin, T.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Liu, J.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

P. Ge, J. Liu, S. Jiang, Y. Xu, and B. Man, “Compact Q-switched 2 μm Tm:GdVO4 laser with MoS2 absorber,” Photon. Res. 3(5), 256–259 (2015).
[Crossref]

Liu, J. H.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Liu, Y.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

Loh, K. P.

Loiko, P.

Loiko, P. A.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Lou, F.

Lu, S. B.

Luan, C.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Luo, Z.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Mak, K. F.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Man, B.

Mao, D.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Mateos, X.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

McDevitt, N. T.

Mei, L.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Miao, L. L.

Moncorgé, R.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nakajima, H.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Pan, Y.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Peng, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Petrov, V.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Piper, J. A.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

Poole, C.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

Pujol, M. C.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Qi, X.

Qian, L. J.

Qiao, J.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Qiao, W.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Qiao, W. C.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Rotermund, F.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Sahin, H.

C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C 116(16), 8983–8999 (2012).
[Crossref]

Saikawa, J.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Serres, J. M.

Shan, J.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shen, D.

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Shoji, I.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Silvestre, Ò.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Su, X.

Sun, H.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Taira, T.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Tang, D. Y.

Tang, Y.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Tian, Z.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Tonelli, M.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

Tu, C.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, D.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, J.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, Q.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Wang, S.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, S. X.

Wang, X.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Wang, Y.

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Wang, Y. G.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Wang, Z.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

F. Lou, R. Zhao, J. He, Z. Jia, X. Su, Z. Wang, J. Hou, and B. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3(2), A25–A29 (2015).
[Crossref]

Wen, S.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Wen, S. C.

Weng, J.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Wu, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Wu, K.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Xia, H.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

Xiang, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Xie, G. Q.

Xu, B.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Xu, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Xu, H.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Xu, J.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Xu, X.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Xu, Y.

Yang, K.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Yang, K. J.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Yang, N.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Yasukevich, A.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Yasukevich, A. S.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

You, Z.

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Yu, H.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Yu, H. H.

Yuan, P.

Yumashev, K.

Yumashev, K. V.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

Zabinski, J. S.

Zayhowski, J. J.

Zhang, B.

Zhang, F.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Zhang, H.

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Zhang, H. J.

Zhang, L.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, S.

Zhang, X.

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Zhang, Y.

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Zhao, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Zhao, C. J.

Zhao, G. J.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Zhao, J.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Zhao, L. M.

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhao, R.

Zhao, S.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Zhao, S. Z.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Zhao, T.

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

Zheng, J.

Zheng, L.

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Zheng, L. H.

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Zhong, M.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

ACS Nano (1)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Appl. Phys. B (2)

T. Zhao, Y. Wang, H. Chen, and D. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

P. A. Loiko, J. M. Serres, X. Mateos, J. Liu, H. Zhang, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Passive Q-switching of Yb bulk lasers by a graphene saturable absorber,” Appl. Phys. B 122, 105 (2016).
[Crossref]

Appl. Phys. Lett. (1)

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Appl. Spectrosc. (1)

IEEE Photonics Technol. Lett. (1)

Y. Zhang, S. Wang, D. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulphide passively modulated green laser pulses,” IEEE Photonics Technol. Lett. 28(2), 197–200 (2016).
[Crossref]

J. Lightwave Technol. (1)

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

J. Phys. Chem. C (1)

C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C 116(16), 8983–8999 (2012).
[Crossref]

Laser Photonics Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Laser Phys. Lett. (3)

T. L. Feng, S. Z. Zhao, K. J. Yang, G. Q. Li, D. C. Li, J. Zhao, W. C. Qiao, L. H. Zheng, J. Xu, G. J. Zhao, and Y. G. Wang, “A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube,” Laser Phys. Lett. 10(9), 095001 (2013).
[Crossref]

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiber laser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

T. Lin, H. Sun, X. Wang, D. Mao, Y. Wang, L. Li, and L. Duan, “Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber,” Laser Phys. Lett. 25(12), 125805 (2015).
[Crossref]

Mater. Lett. (1)

Y. Sun, J. Xu, S. Gao, C. Lee, H. Xia, Y. Wang, Z. You, and C. Tu, “Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid-state laser using MoS2 saturable absorber,” Mater. Lett. 160, 268–270 (2015).
[Crossref]

Nano Lett. (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser,” Opt. Commun. 207(1-6), 315–320 (2002).
[Crossref]

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (1)

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (3)

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Other (3)

A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984).

C. Luan, X. Zhang, J. Zhao, S. Zhao, K. Yang, T. Li, W. Qiao, H. Chu, J. Qiao, J. Wang, L. Zheng, X. Xu, and J. Xu, “High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. (to be published).

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramic,” Appl. Opt.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 MoS2 saturable absorber: intrinsic transmission spectrum, # indicates the D and C electronic inter-band transitions (a), Raman spectrum compared with that of polycrystalline MoS2, * denotes bands due to the quartz substrate (b), open-aperture Z-scan experiment (c) and the corresponding absorption saturation curve measured at 1.06 μm under ps excitation (d): points – experimental data, red curve – fitting with Eqs. (1)-(2).
Fig. 2
Fig. 2 (a) Scheme of the Yb and Tm microchip lasers PQS by a MoS2-based SA: LD – laser diode, PM – pump mirror, OC – output coupler; (b) calculated mean radius of the laser mode wL(SA) in the SA versus the absorbed pump power for Yb and Tm lasers (wp: pump spot radius).
Fig. 3
Fig. 3 Tm:KLuW laser PQS with MoS2- and graphene-based SAs and in CW for comparison: input-output dependences, η is the slope efficiency (a), and typical laser emission spectra at Pabs = 4.8 W (b).
Fig. 4
Fig. 4 Tm:KLuW laser PQS with MoS2- and graphene-based SAs: (a) pulse duration, τ, (FWHM), (b) pulse repetition frequency (PRF), (c) pulse energy, Eout = Pout/PRF, and (d) peak power, Ppeak = Eout/τ, symbols – experimental data, curves – numerical modeling.
Fig. 5
Fig. 5 Tm:KLuW laser PQS with MoS2- and graphene-based SAs: (a) oscilloscope traces of the shortest pulses and the corresponding pulse trains measured at Pabs = 4.8 W for MoS2- (b) and graphene-SA (c).
Fig. 6
Fig. 6 Yb:KLuW laser PQS with MoS2- and graphene-based SAs and in CW for comparison: input-output dependences, η is the slope efficiency (a), and typical laser emission spectra at Pabs = 5.4 W (b).
Fig. 7
Fig. 7 Yb:KLuW laser PQS with MoS2- and graphene-based SAs: (a) pulse duration, (b) PRF, (c) pulse energy and (d) peak power, symbols – experimental data, curves – numerical modeling.
Fig. 8
Fig. 8 Yb:KLuW laser PQS with MoS2- and graphene-based SAs: (a) oscilloscope traces of the shortest pulses and the corresponding pulse trains measured at Pabs = 5.4 W for MoS2- (b) and graphene- (c) SA.

Tables (4)

Tables Icon

Table 1 Parameters of the Studied Laser Crystals

Tables Icon

Table 2 Output characteristics of Yb: and Tm:KLuW microchip lasers PQS with MoS2 and graphene SAs

Tables Icon

Table 3 Saturable absorption properties* of MoS2 and graphene-based SAs

Tables Icon

Table 4 Parameters of near-IR bulk lasers PQS with MoS2-based SA reported so far

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T exp (I)= 1 E 0 + 0 2π + T[I(r,t)]I(r,t)rdrdθdt,
I(r,t)= I 0 e 2 r 2 w L 2 e 4ln2 t 2 τ 2 ,where I 0 = 2E π w L 2 τ* ,
α (I)= α NS + α S 1+(I/ I sat ) ,
α 0 =1 T 0 = α NS + α S ,

Metrics