Abstract

A new cyclic chiral azobenzene compound Azo-o-Bi was synthesized, which exhibits photochemically reversible cis-trans isomerization in both organic solvents and liquid crystal hosts. When doping into a nematic liquid crystal, it displays high helical twisting power (HTP, β) and a large change in HTP (Δβ) due to photoisomerization. Therefore, we are able to reversibly tune the reflection colors from near-IR to blue using irradiation with light. For weak UV light irradiation, a broadband reflection film with pitch gradients can be obtained with superior stability in the dark. This stability is associated with the cyclo-shape of the Azo-o-Bi and the high viscosity of the host liquid crystal. The latter reduces the diffusion contribution of isomers to a negligible level. The spatial and temporal control of the light irradiation can be used to photoaddress the CLC with RGB reflection colors and white-on-black reflective displays.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals

Andy Ying-Guey Fuh, Zong-Han Wu, Ko-Ting Cheng, Cheng-Kai Liu, and Yuan-Di Chen
Opt. Express 21(19) 21840-21846 (2013)

Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal

Boyoung Kang, Hyunhee Choi, Mi-Yun Jeong, and J. W. Wu
J. Opt. Soc. Am. B 27(2) 204-207 (2010)

Electrically switchable, photoaddressable cholesteric liquid crystal reflectors

Timothy J. White, Rebecca L. Bricker, Lalgudi V. Natarajan, Vincent P. Tondiglia, Lisa Green, Quan Li, and Timothy J. Bunning
Opt. Express 18(1) 173-178 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  2. N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
    [Crossref]
  3. T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
    [Crossref]
  4. N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
    [Crossref]
  5. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
    [Crossref]
  6. W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
    [Crossref] [PubMed]
  7. T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
    [Crossref] [PubMed]
  8. N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
    [Crossref]
  9. M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
    [Crossref]
  10. S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
    [Crossref] [PubMed]
  11. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [Crossref]
  12. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
    [Crossref] [PubMed]
  13. J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
    [Crossref]
  14. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
    [Crossref] [PubMed]
  15. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
    [Crossref]
  16. D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  17. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
    [Crossref] [PubMed]
  18. S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
    [Crossref] [PubMed]
  19. P. Raynes, S. J. Cowling, and J. W. Goodby, “Investigations of optical activity of natural products and chiral pharmaceuticals using liquid crystal technologies,” Anal. Methods 1(2), 88–92 (2009).
    [Crossref]
  20. J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
    [Crossref] [PubMed]
  21. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  22. H. Lu, W. Xu, Z. Song, S. Zhang, L. Qiu, X. Wang, G. Zhang, J. Hu, and G. Lv, “Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid,” Opt. Lett. 39(24), 6795–6798 (2014).
    [Crossref] [PubMed]
  23. T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
    [Crossref]
  24. H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
    [Crossref]
  25. Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
    [Crossref]
  26. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [Crossref]
  27. T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
    [Crossref]
  28. C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases,” Adv. Mater. 10(14), 1080–1082 (1998).
    [Crossref]
  29. Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromicfulgide derivatives,” Chem. Lett. 26(8), 687–688 (1997).
    [Crossref]
  30. S. Z. Janicki and G. B. Schuster, “A Liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger,” J. Am. Chem. Soc. 117(33), 8524–8527 (1995).
    [Crossref]
  31. K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
    [Crossref] [PubMed]
  32. M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) (24): 3609–3611 (2009).
    [Crossref] [PubMed]
  33. Y. Kim and N. Tamaoki, “A photoresponsive planar chiral azobenzene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9258–9264 (2014).
    [Crossref]
  34. M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
    [Crossref] [PubMed]
  35. H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
    [Crossref] [PubMed]
  36. Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
    [Crossref]
  37. Y.-M. Chen, C.-F. Chen, and F. Xi, “Chiral dendrimers with axial chirality,” Chirality 10(7), 661–666 (1999).
    [Crossref]
  38. C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
    [Crossref]
  39. L. D. Bari, G. Pescitelli, and P. Salvadori, “Conformation Study of 2,2′-Homosubstituted 1,1′-Binaphthyls by Means of UV and CD Spectroscopy,” J. Am. Chem. Soc. 121(35), 7998–8004 (1999).
    [Crossref]
  40. M. Mathews and N. Tamaoki, “Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals,” J. Am. Chem. Soc. 130(34), 11409–11416 (2008).
    [Crossref] [PubMed]
  41. Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
    [Crossref] [PubMed]
  42. Y. Li, A. Urbas, and Q. Li, “Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality,” J. Org. Chem. 76(17), 7148–7156 (2011).
    [Crossref] [PubMed]
  43. Y. Li and Q. Li, “Photochemically reversible and thermally stable axially chiral diarylethene switches,” Org. Lett. 14(17), 4362–4365 (2012).
    [Crossref] [PubMed]
  44. D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
    [Crossref] [PubMed]
  45. N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).
  46. Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
    [Crossref] [PubMed]
  47. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
    [Crossref]
  48. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
    [Crossref]
  49. X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
    [Crossref]
  50. R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
    [Crossref]
  51. H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
    [Crossref]
  52. X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
    [Crossref]
  53. Y. Huang and S. Zhang, “Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals,” Appl. Opt. 51(24), 5780–5784 (2012).
    [Crossref] [PubMed]
  54. H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
    [Crossref]
  55. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A .Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D. J. Fox, C. T. Wallingford, Gaussian, Inc. 2009, Gaussian 09.

2015 (1)

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

2014 (5)

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

H. Lu, W. Xu, Z. Song, S. Zhang, L. Qiu, X. Wang, G. Zhang, J. Hu, and G. Lv, “Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid,” Opt. Lett. 39(24), 6795–6798 (2014).
[Crossref] [PubMed]

Y. Kim and N. Tamaoki, “A photoresponsive planar chiral azobenzene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9258–9264 (2014).
[Crossref]

2013 (2)

Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
[Crossref]

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

2012 (6)

Y. Li and Q. Li, “Photochemically reversible and thermally stable axially chiral diarylethene switches,” Org. Lett. 14(17), 4362–4365 (2012).
[Crossref] [PubMed]

Y. Huang and S. Zhang, “Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals,” Appl. Opt. 51(24), 5780–5784 (2012).
[Crossref] [PubMed]

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

2011 (3)

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

Y. Li, A. Urbas, and Q. Li, “Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality,” J. Org. Chem. 76(17), 7148–7156 (2011).
[Crossref] [PubMed]

2010 (7)

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

2009 (4)

P. Raynes, S. J. Cowling, and J. W. Goodby, “Investigations of optical activity of natural products and chiral pharmaceuticals using liquid crystal technologies,” Anal. Methods 1(2), 88–92 (2009).
[Crossref]

K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

2008 (1)

M. Mathews and N. Tamaoki, “Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals,” J. Am. Chem. Soc. 130(34), 11409–11416 (2008).
[Crossref] [PubMed]

2007 (3)

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

2006 (2)

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

2005 (1)

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
[Crossref]

2003 (2)

C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
[Crossref] [PubMed]

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

2002 (1)

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

2001 (3)

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
[Crossref]

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[Crossref]

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

2000 (1)

C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
[Crossref]

1999 (3)

L. D. Bari, G. Pescitelli, and P. Salvadori, “Conformation Study of 2,2′-Homosubstituted 1,1′-Binaphthyls by Means of UV and CD Spectroscopy,” J. Am. Chem. Soc. 121(35), 7998–8004 (1999).
[Crossref]

Y.-M. Chen, C.-F. Chen, and F. Xi, “Chiral dendrimers with axial chirality,” Chirality 10(7), 661–666 (1999).
[Crossref]

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
[Crossref]

1998 (2)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases,” Adv. Mater. 10(14), 1080–1082 (1998).
[Crossref]

1997 (2)

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromicfulgide derivatives,” Chem. Lett. 26(8), 687–688 (1997).
[Crossref]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

1995 (2)

S. Z. Janicki and G. B. Schuster, “A Liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger,” J. Am. Chem. Soc. 117(33), 8524–8527 (1995).
[Crossref]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

1994 (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Abraham, S.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

Akagi, K.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

Bari, L. D.

L. D. Bari, G. Pescitelli, and P. Salvadori, “Conformation Study of 2,2′-Homosubstituted 1,1′-Binaphthyls by Means of UV and CD Spectroscopy,” J. Am. Chem. Soc. 121(35), 7998–8004 (1999).
[Crossref]

Bian, Z.

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

Bourgerette, C.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Bunning, T. J.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Cao, H.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

Cao, W.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Chen, C.-F.

Y.-M. Chen, C.-F. Chen, and F. Xi, “Chiral dendrimers with axial chirality,” Chirality 10(7), 661–666 (1999).
[Crossref]

Chen, X. W.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Chen, Y. J.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Chen, Y.-M.

Y.-M. Chen, C.-F. Chen, and F. Xi, “Chiral dendrimers with axial chirality,” Chirality 10(7), 661–666 (1999).
[Crossref]

Cheng, Z.

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Cheng, Z. H.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Choi, Y.-J.

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Clerx, J.

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Cowling, S. J.

P. Raynes, S. J. Cowling, and J. W. Goodby, “Investigations of optical activity of natural products and chiral pharmaceuticals using liquid crystal technologies,” Anal. Methods 1(2), 88–92 (2009).
[Crossref]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Das, S.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

Debije, M. G.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

Denekamp, C.

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases,” Adv. Mater. 10(14), 1080–1082 (1998).
[Crossref]

Ding, A. X.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Doane, J. W.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Donane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Feringa, B. L.

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases,” Adv. Mater. 10(14), 1080–1082 (1998).
[Crossref]

Ferrarini, A.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Finkelmann, H.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
[Crossref]

Freer, A. S.

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

Fu, K.-Y.

Furumi, S.

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

Goodby, J. W.

P. Raynes, S. J. Cowling, and J. W. Goodby, “Investigations of optical activity of natural products and chiral pharmaceuticals using liquid crystal technologies,” Anal. Methods 1(2), 88–92 (2009).
[Crossref]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Guo, R. W.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Hayasaka, H.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

Hayashi, K.-I.

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

He, W. L.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Hensen, J. L. M.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Hoogboom, J.

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Hou, G. Y.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Hu, J.

Hu, W.

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Huang, C.-Y.

Huang, W.

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

Huang, Y.

Hurley, S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Inagawa, T.

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

Irie, M.

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

Irie, S.

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

Janicki, S. Z.

S. Z. Janicki and G. B. Schuster, “A Liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger,” J. Am. Chem. Soc. 117(33), 8524–8527 (1995).
[Crossref]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Jeong, K.-U.

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Kajiyama, T.

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

Kang, S.-W.

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Katsonis, N.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Kawamoto, M.

K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
[Crossref] [PubMed]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Khan, A.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Khandelwal, H.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

Kikuchi, H.

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

Kim, D.-Y.

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Kim, Y.

Y. Kim and N. Tamaoki, “A photoresponsive planar chiral azobenzene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9258–9264 (2014).
[Crossref]

Kniesel, S.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
[Crossref]

Kong, L.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Kosa, T.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Kruk, G.

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
[Crossref]

Kuwada, K.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

Lacaze, E.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Lee, S.-A.

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Li, C. Y.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Li, K.

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

Li, K. X.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Li, Q.

Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
[Crossref]

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

Y. Li and Q. Li, “Photochemically reversible and thermally stable axially chiral diarylethene switches,” Org. Lett. 14(17), 4362–4365 (2012).
[Crossref] [PubMed]

Y. Li, A. Urbas, and Q. Li, “Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality,” J. Org. Chem. 76(17), 7148–7156 (2011).
[Crossref] [PubMed]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Li, Y.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

Y. Li and Q. Li, “Photochemically reversible and thermally stable axially chiral diarylethene switches,” Org. Lett. 14(17), 4362–4365 (2012).
[Crossref] [PubMed]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

Y. Li, A. Urbas, and Q. Li, “Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality,” J. Org. Chem. 76(17), 7148–7156 (2011).
[Crossref] [PubMed]

Li, Y. N.

Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
[Crossref]

Lightfoot, M.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Liu, Q.

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Liu, X.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Lo, K.-Y.

Loonen, R. C. G. M.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

Lu, H.

Lu, H. B.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Lv, G.

Ma, J.

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

Magyar, G.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Mallia, V. A.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

Mathews, M.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

M. Mathews and N. Tamaoki, “Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals,” J. Am. Chem. Soc. 130(34), 11409–11416 (2008).
[Crossref] [PubMed]

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) (24): 3609–3611 (2009).
[Crossref] [PubMed]

Matsuda, H.

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
[Crossref]

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
[Crossref]

Matsuyama, K.

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

McCounney, M. E.

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

Meijer, E. W.

C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
[Crossref]

Mishima, K.

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

Mitov, M.

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Miyashita, T.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Montbach, E.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Moriyama, M.

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
[Crossref]

Muñoz, A.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Nakayama, M.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

Nakazumi, H. Y.

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Nolte, R. J.

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Otten, M. B.

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Palffy-Muhoray, P.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Park, M.

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Peerlings, H. W. I.

C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
[Crossref]

Pescitelli, G.

L. D. Bari, G. Pescitelli, and P. Salvadori, “Conformation Study of 2,2′-Homosubstituted 1,1′-Binaphthyls by Means of UV and CD Spectroscopy,” J. Am. Chem. Soc. 121(35), 7998–8004 (1999).
[Crossref]

Qiu, L.

Qiu, L. Z.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Rasing, T.

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Ratheesh, K. V.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

Raynes, P.

P. Raynes, S. J. Cowling, and J. W. Goodby, “Investigations of optical activity of natural products and chiral pharmaceuticals using liquid crystal technologies,” Anal. Methods 1(2), 88–92 (2009).
[Crossref]

Relaix, S.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Rosini, C.

C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
[Crossref]

Rowan, A. E.

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Sagisaka, T.

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromicfulgide derivatives,” Chem. Lett. 26(8), 687–688 (1997).
[Crossref]

Salvadori, P.

L. D. Bari, G. Pescitelli, and P. Salvadori, “Conformation Study of 2,2′-Homosubstituted 1,1′-Binaphthyls by Means of UV and CD Spectroscopy,” J. Am. Chem. Soc. 121(35), 7998–8004 (1999).
[Crossref]

Schenning, A. P. H. J.

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

Schmidtke, J.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
[Crossref]

Schneider, T.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Schuster, G. B.

S. Z. Janicki and G. B. Schuster, “A Liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger,” J. Am. Chem. Soc. 117(33), 8524–8527 (1995).
[Crossref]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Song, L.

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Song, S.

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
[Crossref]

Song, Z.

Su, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Sukhomlinova, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Superchi, S.

C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
[Crossref]

Tabiryan, N. V.

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Taheri, B.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Takaishi, K.

K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
[Crossref] [PubMed]

Tamaoki, N.

Y. Kim and N. Tamaoki, “A photoresponsive planar chiral azobenzene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9258–9264 (2014).
[Crossref]

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

M. Mathews and N. Tamaoki, “Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals,” J. Am. Chem. Soc. 130(34), 11409–11416 (2008).
[Crossref] [PubMed]

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
[Crossref]

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[Crossref]

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
[Crossref]

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) (24): 3609–3611 (2009).
[Crossref] [PubMed]

Tian, Y. P.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Tondiglia, V. P.

Tsai, M. S.

Tsubaki, K.

K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
[Crossref] [PubMed]

Urbas, A.

Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
[Crossref]

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

Y. Li, A. Urbas, and Q. Li, “Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality,” J. Org. Chem. 76(17), 7148–7156 (2011).
[Crossref] [PubMed]

Venkataraman, N.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Wada, T.

K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
[Crossref] [PubMed]

Wang, F. F.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Wang, L.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Wang, M.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

Wang, M. F.

Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
[Crossref]

Wang, X.

Wang, X. H.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

White, T. J.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Wu, X. J.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Xi, F.

Y.-M. Chen, C.-F. Chen, and F. Xi, “Chiral dendrimers with axial chirality,” Chirality 10(7), 661–666 (1999).
[Crossref]

Xu, M.

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

Xu, W.

Xu, W. B.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Xue, C.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

Yamaguchi, T.

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

Yang, D. K.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Yang, D.-K.

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

Yang, H.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

Yang, J. X.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Yang, Z.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Yokoyama, Y.

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromicfulgide derivatives,” Chem. Lett. 26(8), 687–688 (1997).
[Crossref]

Yu, L. L.

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

Zhang, G.

Zhang, G. B.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Zhang, G. Y.

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Zhang, H.

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

Zhang, H. Q.

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Zhang, S.

Zhang, X. G.

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Zhao, H.

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

Zola, R. S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

A. Funt. Mater. (1)

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000nm range,” A. Funt. Mater. 19(21), 3484–3488 (2009).
[Crossref]

Adv. Funct. Mater. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Adv. Mater. (6)

W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, and H. Yang, “Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites,” Adv. Mater. 22(4), 468–472 (2010).
[Crossref] [PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[Crossref]

S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases,” Adv. Mater. 10(14), 1080–1082 (1998).
[Crossref]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. 23(43), 5069–5073 (2011).
[Crossref] [PubMed]

Anal. Methods (1)

P. Raynes, S. J. Cowling, and J. W. Goodby, “Investigations of optical activity of natural products and chiral pharmaceuticals using liquid crystal technologies,” Anal. Methods 1(2), 88–92 (2009).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

H. Yang, K. Mishima, K. Matsuyama, K.-I. Hayashi, H. Kikuchi, and T. Kajiyama, “Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites,” Appl. Phys. Lett. 82(15), 2407–2409 (2003).
[Crossref]

Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, and H. Zhang, “Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution,” Appl. Phys. Lett. 91(20), 201908 (2007).
[Crossref]

Chem. Commun. (Camb.) (1)

X. W. Chen, L. Wang, Y. J. Chen, C. Y. Li, G. Y. Hou, X. Liu, X. G. Zhang, W. L. He, and H. Yang, “Broadband reflection of polymer-stabilized chiral nematic liquid crystals induceds by a chiral azobenzene compound,” Chem. Commun. (Camb.) 50(6), 691–694 (2014).
[Crossref]

Chem. Lett. (1)

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromicfulgide derivatives,” Chem. Lett. 26(8), 687–688 (1997).
[Crossref]

Chirality (1)

Y.-M. Chen, C.-F. Chen, and F. Xi, “Chiral dendrimers with axial chirality,” Chirality 10(7), 661–666 (1999).
[Crossref]

Eur. J. Org. Chem. (1)

C. Rosini, S. Superchi, H. W. I. Peerlings, and E. W. Meijer, “Enantiopure dendrimers derived from 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template,” Eur. J. Org. Chem. 2000(1), 61–71 (2000).
[Crossref]

J. Am. Chem. Soc. (6)

L. D. Bari, G. Pescitelli, and P. Salvadori, “Conformation Study of 2,2′-Homosubstituted 1,1′-Binaphthyls by Means of UV and CD Spectroscopy,” J. Am. Chem. Soc. 121(35), 7998–8004 (1999).
[Crossref]

M. Mathews and N. Tamaoki, “Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals,” J. Am. Chem. Soc. 130(34), 11409–11416 (2008).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[Crossref] [PubMed]

S. Z. Janicki and G. B. Schuster, “A Liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger,” J. Am. Chem. Soc. 117(33), 8524–8527 (1995).
[Crossref]

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

J. Mater. Chem. (4)

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
[Crossref]

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning, and M. G. Debije, “Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings,” J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14622–14627 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

Y. Kim and N. Tamaoki, “A photoresponsive planar chiral azobenzene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(43), 9258–9264 (2014).
[Crossref]

H. B. Lu, L. Z. Qiu, G. Y. Zhang, A. X. Ding, W. B. Xu, G. B. Zhang, X. H. Wang, L. Kong, Y. P. Tian, and J. X. Yang, “Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(8), 1386–1389 (2014).
[Crossref]

Y. N. Li, M. F. Wang, A. Urbas, and Q. Li, “A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(25), 3917–3923 (2013).
[Crossref]

J. Org. Chem. (2)

K. Takaishi, M. Kawamoto, K. Tsubaki, and T. Wada, “Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene,” J. Org. Chem. 74(15), 5723–5726 (2009).
[Crossref] [PubMed]

Y. Li, A. Urbas, and Q. Li, “Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality,” J. Org. Chem. 76(17), 7148–7156 (2011).
[Crossref] [PubMed]

Journal of the SID (1)

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, and Q. Li, “Thin flexible photosensitive cholesteric displays,” Journal of the SID 17(10), 869–873 (2009).

Macromolecules (1)

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer under biaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. (1)

T. Yamaguchi, T. Inagawa, H. Y. Nakazumi, S. Irie, and M. Irie, “Photoswitching of helical twisting power by chiral diarylethene dopants,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 365(1), 861–866 (2001).
[Crossref]

Nat. Mater. (2)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Nature (3)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Org. Lett. (1)

Y. Li and Q. Li, “Photochemically reversible and thermally stable axially chiral diarylethene switches,” Org. Lett. 14(17), 4362–4365 (2012).
[Crossref] [PubMed]

Polymer (Guildf.) (2)

X. J. Wu, L. L. Yu, H. Cao, R. W. Guo, K. X. Li, Z. H. Cheng, F. F. Wang, Z. Yang, and H. Yang, “Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphalene crosslinking agent,” Polymer (Guildf.) 52(25), 5836–5845 (2011).
[Crossref]

R. W. Guo, K. X. Li, H. Cao, X. J. Wu, Z. H. Cheng, F. F. Wang, H. Q. Zhang, and H. Yang, “Chiral polymer networks with a broad reflection band achieved with varying temperature,” Polymer (Guildf.) 51(25), 5990–5996 (2010).
[Crossref]

Soft Matter (1)

D.-Y. Kim, S.-A. Lee, M. Park, Y.-J. Choi, S.-W. Kang, and K.-U. Jeong, “Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties,” Soft Matter 11(15), 2924–2933 (2015).
[Crossref] [PubMed]

Other (3)

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A .Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D. J. Fox, C. T. Wallingford, Gaussian, Inc. 2009, Gaussian 09.

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) (24): 3609–3611 (2009).
[Crossref] [PubMed]

J. Hoogboom, J. Clerx, M. B. Otten, A. E. Rowan, T. Rasing, and R. J. Nolte, “Novel alignment technique for LCD-biosensors,” Chem. Commun. (Camb.) (23): 2856–2857 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 trans- and cis-isomer of molecule Azo-o-Bi.
Fig. 2
Fig. 2 (a) Changes in the absorption spectra of Azo-o-Bi in THF solution (10 μM) upon irradiation with UV (365 nm, 1.0 mW/cm2) and visible (440 nm, 2.5 mW/cm2) light at room temperature. (b) CD spectra of Azo-o-Bi in THF solution (10 μM) at PSSUV (black line) and PSSVis (red line).
Fig. 3
Fig. 3 The change of Cano’s line of 0.1 wt% Azo-o-Bi dissolved in host HNG in the wedge type cell upon UV or visible light irradiation at room temperature.
Fig. 4
Fig. 4 (a) Reversibly change in the transmittance spectra of 4 wt% Azo-o-Bi dissolved in host HNG upon UV or visible light irradiation at room temperature. (b) The tunability of reflection wavelength as a function of exposure time. (c) Images of the real cells that show reflection colors corresponding to the transmittance spectra.
Fig. 5
Fig. 5 (a) The transmittance spectra of 4 wt% Azo-o-Bi dissolved in host HNG in the broadband reflection (red line) and selective reflection (black line) states. (b) The mechanism of the formation of broadband reflection state. (c) The photographs illustrating the reflection/transmission of the broadband reflection and the selective reflection state.
Fig. 6
Fig. 6 Images of a 20 μm thick planar cell filled with 4wt% Azo-o-Bi in HNG.
Fig. 7
Fig. 7 synthetic route of Azo-o-Bi.
Fig. 8
Fig. 8 1H NMR spectra of Azo-o-Bi in CDCl3 at its PSSUV (A) and PSSVis (B) state.
Fig. 9
Fig. 9 Cyclical absorbance of compound Azo-o-Bi in THF solution at 337 nm (black line) and 433 nm (red line) as the solution is repeatedly irradiated with UV light (365 nm) and visible light (440 nm) respectively.
Fig. 10
Fig. 10 The configuration of trans- and cis-isomer of Azo-o-Bi and the dihedral angle between two naphthalene rings.
Fig. 11
Fig. 11 Contact tests between the CLC including Azo-o-Bi and (a) R811 (right- handed screw) or (b) S811 (left-handed screw) in the same LC host HNG.
Fig. 12
Fig. 12 The transmittance spectra of broadband reflection CLC stored in dark condition.

Metrics