Abstract

Because the electrochromic (EC) performance significantly affects the diffusion of ions into the EC layer, EC layer thicknesses vary, ranging from approximately 100 nm to 400 nm. Their optimized and maximized EC performance in both optical contrast and color-switching behaviors are investigated as a function of EC layer thicknesses and applied bias voltages. Commercially available poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS) is selected as the EC layer due to its environmentally friendly condition and expected reproducible uniformity. Among the four different thicknesses of the PEDOT:PSS layer fabricated, the ~200 nm thick PEDOT:PSS layer exhibits the highest optical contrast ratio at an applied bias voltage of + 3.0 V for the bleached state and - 3.0 V for the colored state. Moreover, through increasing the applied bias voltage slightly to + 3.5 V/- 3.5 V, the color-switching speed is also significantly improved from 10 s to 5 s for switching from the bleached state to the colored state.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical constants of electrochromic films and contrast ratio of reflective electrochromic devices

Cheng-Chung Jaing, Chien-Jen Tang, Chih-Chao Chan, Kun-Hsien Lee, Chien-Cheng Kuo, Hsi-Chao Chen, and Cheng-Chung Lee
Appl. Opt. 53(4) A154-A158 (2014)

Facile and economical synthesis of an electrochromic copolymer for black based on electropolymerization of thiophene and 3,4-ethylenedioxythiophene

Yi-jie Tao, Zhao-yang Zhang, Xiao-qian Xu, Nan-nan Wang, Yong-jiang Zhou, and Hai-feng Cheng
Opt. Express 20(14) 15121-15125 (2012)

Electrochromic LixWO3/polymer laminate/LiyV2O5 device: toward an all-solid-state smart window

A. M. Andersson, Claes G. Granqvist, and J. R. Stevens
Appl. Opt. 28(16) 3295-3302 (1989)

References

  • View by:
  • |
  • |
  • |

  1. P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications (Wiley, 2008).
  2. P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
    [Crossref]
  3. Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
    [Crossref] [PubMed]
  4. H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
    [Crossref] [PubMed]
  5. M. F. Zainal, Y. Mohd, and R. Ibrahim, “Preparation and characterization of electrochromic polyaniline (PANi) thin films,” in Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 64–68 (2013).
    [Crossref]
  6. H. Haitao, C. Yanzhen, and T. Zhaowu, “Electrochromic properties of polythiophene,” Wuli Huaxue Xuebao 2(05), 417–423 (1986).
  7. A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
    [Crossref]
  8. L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
    [Crossref]
  9. Y. Fu, H. Cheng, and R. L. Elsenbaumer, “Electron-rich thienylene−vinylene low bandgap polymers,” Chem. Mater. 9(8), 1720–1724 (1997).
    [Crossref]
  10. G. A. Sotzing, J. R. Reynolds, and P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chem. Mater. 8(4), 882–889 (1996).
    [Crossref]
  11. M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
    [Crossref]
  12. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
    [Crossref]
  13. E. Amasawa, “Design and characterization of a durable and highly efficient energy-harvesting electrochromic,” Master of Science in Engineering, University of Washington (2013).
  14. Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
    [Crossref] [PubMed]
  15. J. Y. Lim, H. C. Ko, and H. Lee, “Systematic prediction of maximum electrochromic contrast of an electrochromic material,” Synth. Met. 155(3), 595–598 (2005).
    [Crossref]

2016 (1)

Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
[Crossref] [PubMed]

2014 (1)

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

2012 (1)

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

2011 (1)

A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
[Crossref]

2009 (1)

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

2005 (1)

J. Y. Lim, H. C. Ko, and H. Lee, “Systematic prediction of maximum electrochromic contrast of an electrochromic material,” Synth. Met. 155(3), 595–598 (2005).
[Crossref]

2003 (1)

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

1997 (1)

Y. Fu, H. Cheng, and R. L. Elsenbaumer, “Electron-rich thienylene−vinylene low bandgap polymers,” Chem. Mater. 9(8), 1720–1724 (1997).
[Crossref]

1996 (1)

G. A. Sotzing, J. R. Reynolds, and P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chem. Mater. 8(4), 882–889 (1996).
[Crossref]

1994 (1)

M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
[Crossref]

1992 (1)

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

1986 (1)

H. Haitao, C. Yanzhen, and T. Zhaowu, “Electrochromic properties of polythiophene,” Wuli Huaxue Xuebao 2(05), 417–423 (1986).

Aubert, P. H.

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

Berggren, M.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Bhuvana, T.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Chen, D.

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Chen, G.

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Cheng, H.

Y. Fu, H. Cheng, and R. L. Elsenbaumer, “Electron-rich thienylene−vinylene low bandgap polymers,” Chem. Mater. 9(8), 1720–1724 (1997).
[Crossref]

Dietrich, M.

M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
[Crossref]

Dyer, A. L.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Elsenbaumer, R. L.

Y. Fu, H. Cheng, and R. L. Elsenbaumer, “Electron-rich thienylene−vinylene low bandgap polymers,” Chem. Mater. 9(8), 1720–1724 (1997).
[Crossref]

Fu, Y.

Y. Fu, H. Cheng, and R. L. Elsenbaumer, “Electron-rich thienylene−vinylene low bandgap polymers,” Chem. Mater. 9(8), 1720–1724 (1997).
[Crossref]

Groenendaal, L.

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

Guo, H.

Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
[Crossref] [PubMed]

Haitao, H.

H. Haitao, C. Yanzhen, and T. Zhaowu, “Electrochromic properties of polythiophene,” Wuli Huaxue Xuebao 2(05), 417–423 (1986).

Heinze, J.

M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
[Crossref]

Hennerdal, L.-O.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Heywang, G.

M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
[Crossref]

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

Ibrahim, R.

M. F. Zainal, Y. Mohd, and R. Ibrahim, “Preparation and characterization of electrochromic polyaniline (PANi) thin films,” in Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 64–68 (2013).
[Crossref]

Jin, X.

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Jonas, F.

M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
[Crossref]

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

Kim, E.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Kim, Y.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Ko, H. C.

J. Y. Lim, H. C. Ko, and H. Lee, “Systematic prediction of maximum electrochromic contrast of an electrochromic material,” Synth. Met. 155(3), 595–598 (2005).
[Crossref]

Lan, C.

Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
[Crossref] [PubMed]

Lee, H.

J. Y. Lim, H. C. Ko, and H. Lee, “Systematic prediction of maximum electrochromic contrast of an electrochromic material,” Synth. Met. 155(3), 595–598 (2005).
[Crossref]

Lee, J.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Li, C.

Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
[Crossref] [PubMed]

Lim, J. Y.

J. Y. Lim, H. C. Ko, and H. Lee, “Systematic prediction of maximum electrochromic contrast of an electrochromic material,” Synth. Met. 155(3), 595–598 (2005).
[Crossref]

Mohd, Y.

M. F. Zainal, Y. Mohd, and R. Ibrahim, “Preparation and characterization of electrochromic polyaniline (PANi) thin films,” in Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 64–68 (2013).
[Crossref]

Nogueira, F. A. R.

A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
[Crossref]

Park, C.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Reynolds, J. R.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

G. A. Sotzing, J. R. Reynolds, and P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chem. Mater. 8(4), 882–889 (1996).
[Crossref]

Ribeiro, A. S.

A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
[Crossref]

Shen, G.

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Shin, H.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Silva, A. J. C.

A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
[Crossref]

Sotzing, G. A.

G. A. Sotzing, J. R. Reynolds, and P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chem. Mater. 8(4), 882–889 (1996).
[Crossref]

Steel, P. J.

G. A. Sotzing, J. R. Reynolds, and P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chem. Mater. 8(4), 882–889 (1996).
[Crossref]

Tehrani, P.

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Tonholo, J.

A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
[Crossref]

Waybright, S. M.

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

Xie, Z.

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Xu, J.

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Yang, X.

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Yanzhen, C.

H. Haitao, C. Yanzhen, and T. Zhaowu, “Electrochromic properties of polythiophene,” Wuli Huaxue Xuebao 2(05), 417–423 (1986).

Yin, Y.

Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
[Crossref] [PubMed]

Zainal, M. F.

M. F. Zainal, Y. Mohd, and R. Ibrahim, “Preparation and characterization of electrochromic polyaniline (PANi) thin films,” in Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 64–68 (2013).
[Crossref]

Zhaowu, T.

H. Haitao, C. Yanzhen, and T. Zhaowu, “Electrochromic properties of polythiophene,” Wuli Huaxue Xuebao 2(05), 417–423 (1986).

Zotti, G.

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

ACS Appl. Mater. Interfaces (2)

H. Shin, Y. Kim, T. Bhuvana, J. Lee, X. Yang, C. Park, and E. Kim, “Color combination of conductive polymers for black electrochromism,” ACS Appl. Mater. Interfaces 4(1), 185–191 (2012).
[Crossref] [PubMed]

Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices,” ACS Appl. Mater. Interfaces 8(6), 3861–3867 (2016).
[Crossref] [PubMed]

Adv. Mater. (2)

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

L. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater. 15(11), 855–879 (2003).
[Crossref]

Chem. Commun. (Camb.) (1)

Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen, and G. Shen, “Integrated smart electrochromic windows for energy saving and storage applications,” Chem. Commun. (Camb.) 50(5), 608–610 (2014).
[Crossref] [PubMed]

Chem. Mater. (2)

Y. Fu, H. Cheng, and R. L. Elsenbaumer, “Electron-rich thienylene−vinylene low bandgap polymers,” Chem. Mater. 9(8), 1720–1724 (1997).
[Crossref]

G. A. Sotzing, J. R. Reynolds, and P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chem. Mater. 8(4), 882–889 (1996).
[Crossref]

J. Electroanal. Chem. (1)

M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” J. Electroanal. Chem. 369(1–2), 87–92 (1994).
[Crossref]

J. Mater. Chem. (1)

P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, “Improving the contrast of all-printed electrochromic polymer on paper displays,” J. Mater. Chem. 19(13), 1799–1802 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. J. C. Silva, F. A. R. Nogueira, J. Tonholo, and A. S. Ribeiro, “Dual-type electrochromic device based on polypyrrole and polythiophene derivatives,” Sol. Energy Mater. Sol. Cells 95(8), 2255–2259 (2011).
[Crossref]

Synth. Met. (1)

J. Y. Lim, H. C. Ko, and H. Lee, “Systematic prediction of maximum electrochromic contrast of an electrochromic material,” Synth. Met. 155(3), 595–598 (2005).
[Crossref]

Wuli Huaxue Xuebao (1)

H. Haitao, C. Yanzhen, and T. Zhaowu, “Electrochromic properties of polythiophene,” Wuli Huaxue Xuebao 2(05), 417–423 (1986).

Other (3)

E. Amasawa, “Design and characterization of a durable and highly efficient energy-harvesting electrochromic,” Master of Science in Engineering, University of Washington (2013).

P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications (Wiley, 2008).

M. F. Zainal, Y. Mohd, and R. Ibrahim, “Preparation and characterization of electrochromic polyaniline (PANi) thin films,” in Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 64–68 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the overall process flow for the ECD preparation. (a) The ITO glass substrate is surface cleaned and then treated in order to obtain a hydrophilic state surface using a UV/ozone chamber. (b) PEDOT:PSS is spin-coated onto the ITO glass, and the thickness of the PEDOT:PSS layers was varied; the final thicknesses are 100 nm, 200 nm, 300 nm, and 400 nm under repeated spin-coating at a fixed spin rpm. (c) Then, double-side adhesive tape is placed on PEDOT:PSS coated ITO glass substrate, and (d) it ws covered with another cleaned ITO glass substrate that was placed with the ITO face-to-face. (e) Finally, the ECD is prepared after injecting the liquid electrolyte through the in/out holes.

Fig. 2
Fig. 2

(a) The measured PEDOT:PSS layer thickness as a function of repeated spin-coating at a fixed spin speed of 2000 rpm. (b) Photos of the thickness-varied PEDOT:PSS films. The film thickness is increased from right to left via repeated spin-coating. (c) UV-Vis-NIR spectra of the PEDOT:PSS film thickness with various thicknesses of 100 nm (referred to as P1), 200 nm (referred to as P2), 300 nm (referred to as P3), and 400 nm (referred to as P4) under repeated spin-coating at a fixed spin rpm.

Fig. 3
Fig. 3

The measured luminous transmittance changes of (a) bleached and (b) colored states of the thickness-varied P1, P2, P3, and P4 under different applied voltages ranging from −3.5 V to + 3.5 V. (c) The calculated contrast ratio demonstrates that the EC layer thickness required to obtain higher Tb and lower Tc must be optimized, and it is found that P2 with ~200 nm-thick layer is optimal.

Fig. 4
Fig. 4

Optical transmittance changes of (a) P2-ECD under an applied reverse bias voltage of + 3.0 V/-3.0 V and + 3.5 V/-3.5 V at a time of 40 s, and (b) photographs of the ECD cells in the initial state as prepared (up), colored state (right), and bleached state (middle) at the voltage indicated.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T= P P 0 ,
T lum = T(λ)f(λ)dλ f(λ)dλ
T b =exp( α b d),
T c =exp( α c d),
CR= exp( α b d) exp( α c d) = T b T c

Metrics