Abstract

The spectroscopic properties of ceramic Er3+:Y2O3 relevant to the 2.7 µm mid-IR laser transition were studied in the temperature range of 77–300K. We present the results of experimental measurements of absorption and fluorescence which were used to determine the branching ratios and fluorescence quantum efficiency of the 4I11/2 upper laser level. We have shown that the quantum yield of the mid-IR transition more than doubles when the sample is cooled from room to cryogenic temperature, and the stimulated emission cross-section of the highest peak increases by a factor of 10 for the same temperature change. Updated cryogenic Er3+:Y2O3 laser parameters for the mid-IR ~2.7um transition are presented as well.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Er:Lu2O3 – Laser-related spectroscopy

Larry D. Merkle, Nikolay Ter-Gabrielyan, Natalie J. Kacik, Tigran Sanamyan, Huaijin Zhang, Haohai Yu, Jiyang Wang, and Mark Dubinskii
Opt. Mater. Express 3(11) 1992-2002 (2013)

Pr:RbPb2Cl5: temperature dependent spectra, dynamics and three-for-one excitation

Larry D. Merkle and Mark Dubinskii
Opt. Express 25(17) 19780-19794 (2017)

Spectroscopic analysis of efficient laser material Ho3+:YVO4

Zackery D. Fleischman, Larry D. Merkle, G. Alex Newburgh, and Mark Dubinskii
Opt. Mater. Express 3(8) 1176-1186 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. M. Taczak and D. K. Killinger, “Development of a Tunable, Narrow-Linewidth, CW 2.066-µm Ho:YLF Laser for Remote Sensing of Atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [Crossref] [PubMed]
  2. V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical Applications of mid-IR lasers. Problems and Prospects,” J. Opt. Technol. 77(1), 6–17 (2010).
    [Crossref]
  3. S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai, “Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device,” Appl. Opt. 49(10), 1809–1817 (2010).
    [Crossref] [PubMed]
  4. G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8µm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
    [Crossref]
  5. J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79um,” Laser Phys. 18(10), 1124–1127 (2008).
    [Crossref]
  6. Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
    [Crossref]
  7. T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(125804), 1–6 (2015).
  8. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
    [Crossref] [PubMed]
  9. K. Petermann, “Oxide laser crystals doped with rare earth and transition metal ions,” in Handbook of Solid-State Lasers: Materials, Systems, and Applications (Woodhead Publishing Limited, 2013).
  10. T. Sanamyan, M. Kanskar, Y Xiao, D Kedlaya, and M Dubinskii, “High power diode-pumped 2.7-µm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Express 19(S5), A1082–A1087 (2011).
    [Crossref] [PubMed]
  11. T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7µm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
    [Crossref]
  12. V. Ter-Mikirtychev, Fundamentals of Fiber Lasers and Fiber Amplifiers (Springer, 2014).
  13. D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
    [Crossref]
  14. E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
    [Crossref]
  15. S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  16. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  17. J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
    [Crossref]

2015 (1)

T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(125804), 1–6 (2015).

2014 (1)

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

2011 (1)

2010 (3)

2009 (1)

Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
[Crossref]

2008 (3)

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79um,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
[Crossref] [PubMed]

2007 (1)

D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
[Crossref]

1998 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1987 (1)

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8µm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Allen, R.

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8µm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

Aoki, T.

Asai, K.

Ballato, J.

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

Bluiett, A.

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

Boiko, E. V.

Brown, E. E.

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Dubinskii, M

Dubinskii, M.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7µm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
[Crossref] [PubMed]

Esterowitz, L.

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8µm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

Fukuoka, H.

Gruber, J. B.

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
[Crossref]

Hommerich, U.

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

Ikesue, A.

Ishii, S.

Ishikawa, T.

Itabe, T.

Iwai, H.

Kanskar, M.

Kedlaya, D

Killinger, D. K.

Kim, G. U.

Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
[Crossref]

Kim, Y. S.

Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
[Crossref]

Kintz, G. J.

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8µm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

Kong, H. J.

Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kucera, C.

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

Liu, J. J.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79um,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

Liu, J. S.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79um,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Merkle, L. D.

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
[Crossref] [PubMed]

Mizutani, K.

Nash, K. L.

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
[Crossref]

Park, Y. H.

Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Petrishchev, N. N.

Philippe, B.

Sanamyan, T.

T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(125804), 1–6 (2015).

T. Sanamyan, M. Kanskar, Y Xiao, D Kedlaya, and M Dubinskii, “High power diode-pumped 2.7-µm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Express 19(S5), A1082–A1087 (2011).
[Crossref] [PubMed]

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7µm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Sarder, D. K.

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
[Crossref]

Sato, A.

Serebryakov, V. A.

Simmons, J.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7µm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Taczak, T. M.

Tang, Y.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79um,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

Ter-Gabrielyan, N.

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
[Crossref] [PubMed]

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

Trivedi, S.

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

Valiev, U. V.

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

Wayne, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Xiao, Y

Yan, A. V.

Yow, R. M.

D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8µm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, L. K. Wayne, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. Am. Ceram. Soc. (1)

E. E. Brown, U. Hommerich, A. Bluiett, C. Kucera, J. Ballato, and S. Trivedi, “Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5 µm excitation,” J. Am. Ceram. Soc. 97(7), 2105–2110 (2014).
[Crossref]

J. Appl. Phys. (2)

D. K. Sarder, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er3+ in Er3+:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007).
[Crossref]

J. B. Gruber, K. L. Nash, D. K. Sarder, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling the optical transitions of Er3+ in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104, 023101 (2008).
[Crossref]

J. Opt. Technol. (1)

Laser Phys. (1)

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79um,” Laser Phys. 18(10), 1124–1127 (2008).
[Crossref]

Laser Phys. Lett. (3)

Y. H. Park, H. J. Kong, Y. S. Kim, and G. U. Kim, “2.70 μm emission Er:Cr:YSGG laser with LINbO3 Pockels cell,” Laser Phys. Lett. 6(3), 198–202 (2009).
[Crossref]

T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(125804), 1–6 (2015).

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7µm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Other (2)

V. Ter-Mikirtychev, Fundamentals of Fiber Lasers and Fiber Amplifiers (Springer, 2014).

K. Petermann, “Oxide laser crystals doped with rare earth and transition metal ions,” in Handbook of Solid-State Lasers: Materials, Systems, and Applications (Woodhead Publishing Limited, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for cryogenic Er:Y2O3 laser. F1-F2: collimating lens, RM: rear mirror, CM: coupling mirror, BS: beam splitter, and T1: temperature sensor.
Fig. 2
Fig. 2 Diagram of the energy levels of Er3+:Y2O3 relevant to the 2.7µm and 1.0µm transitions.
Fig. 3
Fig. 3 Absorption cross section for 0.25at.% Er3+:Y2O3 at 300K (solid line) and 77 K (dotted line).
Fig. 4
Fig. 4 (a) Fluorescence spectra of the 4I11/2 to ground state transition for Er3+:Y2O3 doped at 0.25 at.% and 10 at.% normalized at the 1030nm peak, and (b) Erbium concentration dependences of the 980nm/1030nm peak intensity ratio and (inset) a diagram illustrating the excitation/emission geometry of the fluorescence measurements.
Fig. 5
Fig. 5 Fluorescence lifetime of the 4I11/2 manifold of 0.25 at.% Er3+:Y2O3 as a function of temperature (K). Inset shows the normalized natural log of the 77 K and 300K PL decay curves.
Fig. 6
Fig. 6 Fluorescence spectrum of both transitions from the 4I11/2 manifold of 0.25 at.% Er3+:Y2O3 at 77 K.
Fig. 7
Fig. 7 (a) The branching ratio β32 for the 4I11/2 to 4I13/2 transition, (b) the A coefficient and radiative lifetime of the 4I11/2 manifold, (c) the fluorescence quantum efficiency (Q.E.) of the 4I11/2 manifold, and (d) Q.E. of the 4I11/2 to 4I13/2 transition. All as a function of temperature for 0.25 at.% Er3+:Y2O3.
Fig. 8
Fig. 8 Stimulated emission cross section for 0.25 at.% Er3+:Y2O3 for the 2.7µm and 1.0µm transitions at 300K and 77K.

Tables (1)

Tables Icon

Table 1 Summary of cryogenic Er3+:Y2O3 laser parameters.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A 31 = Z 1 Z 3 8πc n 2 σ abs (λ)dλ λ 4
τ rad = 1 A = β 31 A 31
η= τ fl τ rad
η 32 = β 32 η
σ se,ij (λ)= 1 8π n 2 c β ij τ rad λ 5 I ij (λ) λ I ij (λ)dλ
σ se (λ)= σ abs (λ) Z L Z U exp[ E 0 hc nλ k B T ]

Metrics