Abstract

In this paper, we numerically demonstrate that an actively controllable electromagnetic induced transparency (EIT) behavior can be obtained in a hybrid terahertz metamaterial. A unit cell of the hybrid metamaterial consists of a metallic split-ring resonator surrounded by a concentric graphene close-ring resonator, serving as superradiant and subradiant modes, respectively. The EIT-like effect results from the destructive interference caused by strong near field coupling between superradiant and subradiant mode resonators. A classical two-particle model is employed to theoretically study EIT-like behavior in the hybrid metamaterial, and the analytic results agree excellently with our numerical results. More importantly, by tuning Fermi energy based on electrical doping, the hybrid metamaterial can realize switching, modulation, and slow-light capabilities. Therefore, these results would exhibit potential applications in light storage and compact devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial

Chenxi Liu, Peiguo Liu, Cheng Yang, Yue Lin, and Song Zha
Opt. Mater. Express 8(5) 1132-1142 (2018)

Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials

Jiuxing Jiang, Qinfei Zhang, Qixiang Ma, Shitao Yan, Fengmin Wu, and Xunjun He
Opt. Mater. Express 5(9) 1962-1971 (2015)

Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals

Huan Chen, Huiyun Zhang, Maodong Liu, Yunkun Zhao, Xiaohan Guo, and Yuping Zhang
Opt. Mater. Express 7(9) 3397-3407 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  3. L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
    [Crossref] [PubMed]
  4. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
    [Crossref] [PubMed]
  5. V. Kravtsov, J. M. Atkin, and M. B. Raschke, “Group delay and dispersion in adiabatic plasmonic nanofocusing,” Opt. Lett. 38(8), 1322–1324 (2013).
    [Crossref] [PubMed]
  6. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  7. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  8. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  9. F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
    [Crossref]
  10. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  11. L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
    [Crossref]
  12. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
    [Crossref] [PubMed]
  13. Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
    [Crossref]
  14. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  15. C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
    [Crossref]
  16. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [Crossref] [PubMed]
  17. W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  18. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  19. X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
    [Crossref] [PubMed]
  20. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
    [Crossref]
  21. X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
    [Crossref]
  22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  23. Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
    [Crossref] [PubMed]
  24. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
    [Crossref] [PubMed]
  25. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
    [Crossref] [PubMed]
  26. Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  27. H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
    [Crossref]
  28. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  29. B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
    [Crossref]
  30. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [Crossref] [PubMed]
  31. B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
    [Crossref] [PubMed]
  32. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  33. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
    [Crossref] [PubMed]
  34. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
    [Crossref] [PubMed]
  35. P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
    [Crossref] [PubMed]
  36. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
    [Crossref] [PubMed]
  37. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
    [Crossref]
  38. L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
    [Crossref]
  39. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
    [Crossref] [PubMed]
  40. J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
    [Crossref]
  41. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
    [Crossref] [PubMed]
  42. A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
    [Crossref]
  43. H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
    [Crossref] [PubMed]
  44. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  45. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
    [Crossref]
  46. L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
    [Crossref]
  47. T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).
  48. X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
    [Crossref] [PubMed]
  49. H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
    [Crossref]
  50. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref] [PubMed]
  51. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  52. X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
    [Crossref]

2016 (1)

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

2015 (10)

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

2014 (3)

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

2013 (9)

V. Kravtsov, J. M. Atkin, and M. B. Raschke, “Group delay and dispersion in adiabatic plasmonic nanofocusing,” Opt. Lett. 38(8), 1322–1324 (2013).
[Crossref] [PubMed]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
[Crossref] [PubMed]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

2012 (8)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
[Crossref] [PubMed]

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

2011 (7)

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
[Crossref] [PubMed]

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

2010 (2)

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

2009 (5)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

2008 (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

2005 (1)

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2001 (1)

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[Crossref]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

1991 (1)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Alù, A.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Arigong, B.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Atkin, J. M.

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bartal, G.

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Boller, K.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Chai, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Che, B. J.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Chen, C. Y.

Chen, H.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

Chen, S. Q.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Cheng, H.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Cheong, H. S.

Choi, J.-J.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Cong, L.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Dai, L.

Dai, X.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Dai, Y.

Ding, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Ding, P.

Dogariu, A.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Dong, L.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Dong, Z. G.

Duan, X. Y.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Erni, D.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Faist, J.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Fan, C.

Fan, Y.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Fan, Y. C.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Feng, T. H.

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, J. H.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Gajic, R.

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Gao, J.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, Z.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Gu, J.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Guo, J.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Han, D.

Han, J.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Han, J. G.

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Harris, S. E.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

He, J.

He, X. J.

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

Ho, J. C.

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Hua, J.

Huang, R.

Huang, X.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Huang, X. R.

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Hui, A.

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Imamolu, A.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Isic, G.

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Jakovljevic, M. M.

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Jang, W. H.

Jia, P.

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

Jia, Q. X.

Jiang, C.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, J. X.

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

Jin, X. R.

Jing, H.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Jing Wong, Z.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Kanté, B.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kim, J.-Y.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Kim, K. W.

Koschny, T.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Kravtsov, V.

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Kuzmich, A.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lanzillotti-Kimura, N. D.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Lee, B.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Lee, C. K.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

Lee, J. C.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Lee, J.-C.

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Lee, S.

Lee, Y.

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Li, J. X.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

Li, T. Y.

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

Li, Z.

Li, Z. C.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Liang, E.

Liang, Z. X.

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Lin, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Liu, H.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, P. Q.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Liu, W. W.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Liu, X.

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Lu, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Lü, X. Y.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Luxmoore, I. J.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Ma, Q. X.

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Manjappa, M.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

Markoš, P.

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Meng, F. Y.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Mikhailov, S. A.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Monticone, F.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nash, G. R.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Nori, F.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

O’Brien, K.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Ouyang, C.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

Özdemir, S. K.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Park, J.

Park, Y.

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Park, Y. S.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Peng, B.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Peng, R. W.

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

Qin, L.

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Raschke, M. B.

Ren, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Rhee, J. Y.

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Savostianova, N. A.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Shao, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Shen, N. H.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shi, X.

Shuldman, D.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

Smith, D. R.

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Su, X.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

Sun, Y.

Tai, N. H.

Tan, S.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

Tian, J. G.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Tian, Z.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Tonouchi, M.

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Un, I. W.

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Valmorra, F.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

Vasic, B.

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Vier, D. C.

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Wang, J.

Wang, L.

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

Wang, L. J.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Wang, M.

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Wang, S. M.

Wang, Y.

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, F. M.

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

Wu, K.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, Q.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Xiang, Y.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Xie, B. Y.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Xiong, X.

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Xu, M. X.

Xu, N.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

Xue, Q.

Yan, F.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

Yan, S. T.

Yang, G. H.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Yang, L.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Ye, Z.

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Yen, T. J.

Yin, X.

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Yin, X. G.

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yip, S.

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yu, P.

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Yu, Z.

Yuan, B.

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zentgraf, T.

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, C. H.

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Zhang, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Zhang, J.

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Zhang, K.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

Zhang, Q. F.

Zhang, S.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Zhang, W. L.

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, X.

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zheng, H.

Zhou, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Zhu, L.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

Zhu, S. N.

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Zi, J.

Zou, Y.

ACS Photonics (1)

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

H. Cheng, S. Q. Chen, P. Yu, W. W. Liu, Z. C. Li, J. X. Li, B. Y. Xie, and J. G. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Adv. Optical Mater. (1)

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Optical Mater. 4(4), 541–547 (2016).
[Crossref]

Appl. Phys. Lett. (7)

B. Vasic, M. M. Jakovljevic, G. Isic, and R. Gajic, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

W. Cao, R. Singh, C. H. Zhang, J. G. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. G. Yin, T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

IEEE Trans. Magn. (1)

F. Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.-Y. Kim, J.-J. Choi, B. Lee, and J.-C. Lee, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47(10), 3347–3350 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Integr. Ferroelectr. (1)

X. J. He, Q. X. Ma, P. Jia, L. Wang, T. Y. Li, F. M. Wu, and J. X. Jiang, “Dynamic manipulation of electromagnetically induced transparency with MEMS metamaterials,” Integr. Ferroelectr. 161(1), 85–91 (2015).
[Crossref]

J. Appl. Phys. (1)

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Nano Lett. (1)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Nanoscale (1)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6, 8969 (2015).
[Crossref] [PubMed]

B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Opt. Express (10)

L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
[Crossref] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[Crossref] [PubMed]

C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
[Crossref] [PubMed]

Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[Crossref]

Phys. Rev. B (4)

T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 7, 1245105 (2005).

Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Phys. Rev. Lett. (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Sci. Rep. (5)

H. Jing, S. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5, 10823 (2015).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 EIT structure based on the hybrid terahertz metamaterial: (a) schematic of hybrid terahertz metamaterial, (b) close-up view of unit cell, and (c) cross-sectional view of unit cell.
Fig. 2
Fig. 2 Calculated transmission spectra and field distributions of two isolated resonators: (a) LC resonance of MSRR, (b) surface currents on MSRR structure, (c) electric fields at the gap of MSRR structure, (d) dipole resonance of GCRR, (e) surface currents on GSRR structure, and (f) electric fields of GSRR structure.
Fig. 3
Fig. 3 Calculated transmission spectrum and surface currents of the hybrid structure: (a) transmission spectrum, (b) 0.483THz, (c) 0.514THz, and (d) 0.564THz.
Fig. 4
Fig. 4 (a) Transmission phase and (b) group delay of the hybrid terahertz metamaterial.
Fig. 5
Fig. 5 Comparison of the simulated transmission curve and the calculated transmission curve by two-particle model for different Fermi energy.
Fig. 6
Fig. 6 (a) Transmission and (b) absorption spectra of EIT structure with different Fermi energy.
Fig. 7
Fig. 7 Slow light effect of hybrid metamaterial with different Fermi energy: (a) transmission phase and (b) group delay.
Fig. 8
Fig. 8 Fitting values for k and δ for the hybrid structure with different Fermi energy.

Tables (2)

Tables Icon

Table 1 Fitting parameters of the analytical models for different Fermi energy

Tables Icon

Table 2 Calculated group delay, DBP, Q-factor, and amplitude of hybrid metamaterial with different Fermi energy

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω )=j e 2 k B T π 2 ( ω+jΓ ) ( E F k B T +2ln( e E F k B T +1))
x ¨ 1 ( t )+ γ 1 x ˙ 1 ( t )+ ω 0 2 x 1 ( t )+ k 2 x 2 ( t )= g 1 E 0 m 1   x ¨ 2 ( t )+ γ 2 x ˙ 2 ( t )+ ( ω 0 +δ) 2 x 2 ( t )+ k 2 x 1 ( t )= g 2 E 0 m 2
  | T |=| 4 χ eff +1 ( χ eff +1 +1) 2 e j 2πd λ 0 χ eff +1 ( χ eff +1 1) 2 e j 2πd λ 0 χ eff +1 |
  χ eff = P ε 0 E 0 = g 1 2 ε 0 m 1 2 × [ ω 2 ( ω 0 δ ) 2 +i γ 2 ω] k 4 [ ω 2 ( ω 0 +δ ) 2 +i γ 2 ω ]( ω 2 ω 0 2 +i γ 1 ω])

Metrics