Abstract

Nanoscale glass milling with mild thermal annealing is proposed and shown to occur within a tri-material composite optical fibre. Evidence of glass relaxation with annealing is inferred directly through measured diameter changes in the core and inner cladding of the long period gratings (LPGs) (Δϕcore = (0.13 ± 0.05) μm; Δϕinner cladding = -(0.5 ± 0.2) μm) using scanning electron microscopy (SEM) before and after annealing at T ~300 °C for 1 hour. Large reductions in the magnitudes of both the temperature and strain coefficients are observed after annealing. The temperature sensitivity drops from dλ/dT = -(111.2 ± 2.4) pm/K to dλ/dT = (1.3 ± 0.3) pm/K and the strain sensitivity decreases from dλ/dε = -(0.11 ± 0.13) pm/με to dλ/dε = (0.02 ± 0.11) pm/με. The fabrication of LPGs using 193 nm radiation is shown to produce measurable increases in the core dimensions within tri-material composite fibres whereas no changes are observed under similar conditions for commercial bi-material single mode fibre.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber

Yinian Zhu, Ping Shum, Hui-Wen Bay, Min Yan, Xia Yu, Juanjuan Hu, Jianzhong Hao, and Chao Lu
Opt. Lett. 30(4) 367-369 (2005)

Resonance-temperature-insensitive phase-shifted long-period fiber gratings induced by surface deformation with anomalous strain characteristics

Yinian Zhu, Ping Shum, Xiaoyan Chen, Ching-Hwee Tan, and Chao Lu
Opt. Lett. 30(14) 1788-1790 (2005)

Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber

Yinian Zhu, Ping Shum, Hui-Wen Bay, Xiaoyan Chen, Ching-Hwee Tan, and Chao Lu
Opt. Lett. 29(22) 2608-2610 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. Canning, “Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing,” Review, Measurement (2015).
    [Crossref]
  2. J. Canning, “The characteristic curve and site-selective laser excitation of local relaxation in glass,” J. Chem. Phys. 120(20), 9715–9719 (2004).
    [Crossref] [PubMed]
  3. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  4. J. Canning and S. Bandyopadhyay, Laser Growth and Processing of Photonic Devices (Woodhead Publishing, 2012).
  5. M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
    [Crossref]
  6. K. Cook, L. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
    [Crossref]
  7. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
    [Crossref]
  8. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
    [Crossref]
  9. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  10. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  11. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  12. V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
    [Crossref]
  13. K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, “A novel temperature-insensitive long-period fibre grating using a boron-codoped-germanosilicate-core fibre,” in Optical Fiber Communication Conference, 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper FB2.
    [Crossref]
  14. J. Jang, S. Y. Kim, S. Kim, and M. Kim, “Temperature insensitive long-period fibre gratings,” Electron. Lett. 35(24), 2134–2135 (1999).
    [Crossref]
  15. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40(11), 657–658 (2004).
    [Crossref]
  16. C. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
    [Crossref]
  17. Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett. 30(4), 367–369 (2005).
    [Crossref] [PubMed]
  18. P. Pace, S. Huntington, K. Lyytikäinen, A. Roberts, and J. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Opt. Express 12(7), 1452–1457 (2004).
    [Crossref] [PubMed]
  19. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [Crossref] [PubMed]
  20. G. W. Chern and L. A. Wang, “Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings,” J. Opt. Soc. Am. A 16(11), 2675–2689 (1999).
    [Crossref]
  21. Optiwave company, “Optigrating software,” http://optiwave.com/category/products/component-design/optigrating/ .
  22. T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).
  23. K. Nassau and D. L. Chadwick, “Multicomponent glasses of GeO2 and Sb2O3 with Bi2O3, and Tl2O, and/or PbO,” J. Am. Ceram. Soc. 66(5), 332–337 (1983).
    [Crossref]
  24. S. W. Martin and C. A. Angell, “On the glass transition and viscosity of phosphorus pentoxide,” J. Phys. Chem. 90(25), 6736–6740 (1986).
    [Crossref]
  25. P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
    [Crossref]
  26. J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
    [Crossref] [PubMed]
  27. R. E. Youngman and S. Sen, “The nature of fluorine in amorphous silica,” J. Non-Cryst. Solids 337(2), 182–186 (2004).
    [Crossref]
  28. J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
    [Crossref]
  29. J. Canning and M. Åslund, “Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings,” Opt. Lett. 24(7), 463–465 (1999).
    [Crossref] [PubMed]

2012 (1)

2011 (1)

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

2010 (1)

M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
[Crossref]

2009 (1)

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

2008 (3)

2005 (1)

2004 (4)

P. Pace, S. Huntington, K. Lyytikäinen, A. Roberts, and J. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Opt. Express 12(7), 1452–1457 (2004).
[Crossref] [PubMed]

J. Canning, “The characteristic curve and site-selective laser excitation of local relaxation in glass,” J. Chem. Phys. 120(20), 9715–9719 (2004).
[Crossref] [PubMed]

R. E. Youngman and S. Sen, “The nature of fluorine in amorphous silica,” J. Non-Cryst. Solids 337(2), 182–186 (2004).
[Crossref]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40(11), 657–658 (2004).
[Crossref]

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

2001 (1)

J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
[Crossref]

1999 (3)

1997 (1)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

1988 (1)

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

1987 (1)

1986 (1)

S. W. Martin and C. A. Angell, “On the glass transition and viscosity of phosphorus pentoxide,” J. Phys. Chem. 90(25), 6736–6740 (1986).
[Crossref]

1983 (1)

K. Nassau and D. L. Chadwick, “Multicomponent glasses of GeO2 and Sb2O3 with Bi2O3, and Tl2O, and/or PbO,” J. Am. Ceram. Soc. 66(5), 332–337 (1983).
[Crossref]

1976 (1)

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

Angell, C. A.

S. W. Martin and C. A. Angell, “On the glass transition and viscosity of phosphorus pentoxide,” J. Phys. Chem. 90(25), 6736–6740 (1986).
[Crossref]

Åslund, M.

Åslund, M. L.

M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
[Crossref]

Bachmann, P. K.

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Bandyopadhyay, S.

Bartelt, H.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

Bay, H. W.

Becker, M.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

Bhatia, V.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

Brückner, S.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

Campbell, D. K.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Canning, J.

K. Cook, L. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
[Crossref]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
[Crossref]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

J. Canning, “The characteristic curve and site-selective laser excitation of local relaxation in glass,” J. Chem. Phys. 120(20), 9715–9719 (2004).
[Crossref] [PubMed]

J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
[Crossref]

J. Canning and M. Åslund, “Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings,” Opt. Lett. 24(7), 463–465 (1999).
[Crossref] [PubMed]

Chadwick, D. L.

K. Nassau and D. L. Chadwick, “Multicomponent glasses of GeO2 and Sb2O3 with Bi2O3, and Tl2O, and/or PbO,” J. Am. Ceram. Soc. 66(5), 332–337 (1983).
[Crossref]

Chern, G. W.

Chojetzki, C.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

Claus, R. O.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Cook, K.

D’Alberto, T. G.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Demokan, M. S.

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40(11), 657–658 (2004).
[Crossref]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Eyck, G. A. T.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Fu, H.

M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
[Crossref]

Gupta, P. K.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

Hao, J.

Hidemasa, M.

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

Hu, J.

Huntington, S.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Jang, J.

J. Jang, S. Y. Kim, S. Kim, and M. Kim, “Temperature insensitive long-period fibre gratings,” Electron. Lett. 35(24), 2134–2135 (1999).
[Crossref]

Jin, W.

Ju, J.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40(11), 657–658 (2004).
[Crossref]

Kentaro, T.

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

Kim, M.

J. Jang, S. Y. Kim, S. Kim, and M. Kim, “Temperature insensitive long-period fibre gratings,” Electron. Lett. 35(24), 2134–2135 (1999).
[Crossref]

Kim, S.

J. Jang, S. Y. Kim, S. Kim, and M. Kim, “Temperature insensitive long-period fibre gratings,” Electron. Lett. 35(24), 2134–2135 (1999).
[Crossref]

Kim, S. Y.

J. Jang, S. Y. Kim, S. Kim, and M. Kim, “Temperature insensitive long-period fibre gratings,” Electron. Lett. 35(24), 2134–2135 (1999).
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Lindner, E.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

Loucks, R. J.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

Love, J.

Lu, C.

Lyytikäinen, K.

Martin, S. W.

S. W. Martin and C. A. Angell, “On the glass transition and viscosity of phosphorus pentoxide,” J. Phys. Chem. 90(25), 6736–6740 (1986).
[Crossref]

Mauro, J. C.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

Meeuwsen, T. P. M.

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Murphy, K. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Nassau, K.

K. Nassau and D. L. Chadwick, “Multicomponent glasses of GeO2 and Sb2O3 with Bi2O3, and Tl2O, and/or PbO,” J. Am. Ceram. Soc. 66(5), 332–337 (1983).
[Crossref]

Norio, M.

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

Pace, P.

Roberts, A.

Rothhardt, M.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

Sakuda, K.

Sen, S.

R. E. Youngman and S. Sen, “The nature of fluorine in amorphous silica,” J. Non-Cryst. Solids 337(2), 182–186 (2004).
[Crossref]

Shao, L.

Sherr, D.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Shigeo, T.

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

Shum, P.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Stevenson, M.

Tam, H.

M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
[Crossref]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

Wang, L. A.

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40(11), 657–658 (2004).
[Crossref]

Wiechert, D. U.

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Xiao, L.

Yamada, M.

Yan, M.

Yohichi, G.

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

Youngman, R. E.

R. E. Youngman and S. Sen, “The nature of fluorine in amorphous silica,” J. Non-Cryst. Solids 337(2), 182–186 (2004).
[Crossref]

Yu, X.

Zabaronick, N. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Zhao, C.

Zhu, Y.

Appl. Opt. (1)

Electron. Lett. (2)

J. Jang, S. Y. Kim, S. Kim, and M. Kim, “Temperature insensitive long-period fibre gratings,” Electron. Lett. 35(24), 2134–2135 (1999).
[Crossref]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40(11), 657–658 (2004).
[Crossref]

J. Am. Ceram. Soc. (1)

K. Nassau and D. L. Chadwick, “Multicomponent glasses of GeO2 and Sb2O3 with Bi2O3, and Tl2O, and/or PbO,” J. Am. Ceram. Soc. 66(5), 332–337 (1983).
[Crossref]

J. Ceram. Soc. Jpn. (1)

T. Kentaro, M. Norio, M. Hidemasa, T. Shigeo, and G. Yohichi, “Properties and structure of glasses in the systems SiO2-P2O5 and GeO2-P2O5,” J. Ceram. Soc. Jpn. 84(10), 482–490 (1976).

J. Chem. Phys. (2)

J. Canning, “The characteristic curve and site-selective laser excitation of local relaxation in glass,” J. Chem. Phys. 120(20), 9715–9719 (2004).
[Crossref] [PubMed]

J. C. Mauro, P. K. Gupta, and R. J. Loucks, “Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids,” J. Chem. Phys. 130(23), 234503 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

C. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fibre gratings as band rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

J. Mater. Sci. (1)

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

J. Non-Cryst. Solids (1)

R. E. Youngman and S. Sen, “The nature of fluorine in amorphous silica,” J. Non-Cryst. Solids 337(2), 182–186 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

S. W. Martin and C. A. Angell, “On the glass transition and viscosity of phosphorus pentoxide,” J. Phys. Chem. 90(25), 6736–6740 (1986).
[Crossref]

Laser Photonics Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Opt. Commun. (2)

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

J. Canning, “Birefringence control in planar waveguides using doped top layers,” Opt. Commun. 191(3-6), 225–228 (2001).
[Crossref]

Opt. Eng. (1)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36(7), 1872–1876 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Proc. SPIE (1)

M. L. Åslund, J. Canning, H. Fu, and H. Tam, “Rapid disappearance of regenerated fibre Bragg gratings at temperatures approaching 1500 °C in boron-codoped germanosilicate optical fibre,” Proc. SPIE 7653, 76530Q (2010).
[Crossref]

Other (4)

J. Canning, “Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing,” Review, Measurement (2015).
[Crossref]

J. Canning and S. Bandyopadhyay, Laser Growth and Processing of Photonic Devices (Woodhead Publishing, 2012).

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, “A novel temperature-insensitive long-period fibre grating using a boron-codoped-germanosilicate-core fibre,” in Optical Fiber Communication Conference, 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper FB2.
[Crossref]

Optiwave company, “Optigrating software,” http://optiwave.com/category/products/component-design/optigrating/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Refractive index, n, profile of the tri-material fibre preform.
Fig. 2
Fig. 2 Transmission spectrum of the tri-material fibre LPG.
Fig. 3
Fig. 3 Temperature sensitivity of the tri-material fibre LPG: (a) wavelength shift, Δλ, and (b) rejection strength, R, versus temperature, T.
Fig. 4
Fig. 4 Strain sensitivity of the tri-material fibre LPG: (a) wavelength shift, Δλ, and (b) rejection strength, R, versus strain.
Fig. 5
Fig. 5 The temperature profile and the evolution of the main rejection band of the tri-material fibre LPG during the post-annealing process: (a) wavelength shift, Δλ, and (b) rejection strength, R.
Fig. 6
Fig. 6 Experimental and simulated results for the transmission spectrum of the annealed tri-material fibre LPG.
Fig. 7
Fig. 7 Temperature sensitivity of the annealed tri-material fibre LPG: (a) wavelength shift, Δλ, and (b) transmission rejection, R, versus temperature, T.
Fig. 8
Fig. 8 Strain sensitivity of the annealed tri-material fibre LPG: (a) wavelength shift, Δλ, and (b) transmission rejection, R, versus strain.
Fig. 9
Fig. 9 Sensitivities of the SMF 28 LPG before and after annealing. (a) temperature sensitivity, and (b) strain sensitivity.
Fig. 10
Fig. 10 The images of etched tri-material fibre LPG samples before and after annealing under SEM: (a) core region before annealing; (b) inner cladding before annealing; (c) outer cladding before annealing; (d) core region after annealing; (e) inner cladding after annealing; (f) outer cladding after annealing.
Fig. 11
Fig. 11 Schematic diagram of the stress distribution in tri-material fibre samples before annealing: (a) pristine fibre; (b) bulk UV exposed fibre; (c) LPG. (σ0c-i/ σ0i-o: initial stress at the core-inner cladding interface and inner-outer cladding interface; σUVc-i/ σUVi-o: UV exposure induced stress at the core-inner cladding interface and inner-outer cladding interface; I: UV fluence intensity).

Tables (3)

Tables Icon

Table 1 Composition of the tri-material fibre preform

Tables Icon

Table 2 Average diameters of different fibre sample

Tables Icon

Table 3 Thermal expansion coefficient (α), transition temperature (Tg) and melting temperature (Tm) of different components

Metrics