Abstract

Continuous-wave microchip laser operation and thermal lensing are studied for Yb-doped gallium garnets, Yb:LuGG, Yb:YGG, Yb:CNGG and Yb:CLNGG under diode-pumping at ~932 and 969 nm. It is shown that although thermal the conductivity of Ga garnets is lower than that of Yb:YAG, the compromised thermo-optic properties, high absorption in the zero-phonon line and low internal loss make the ordered Yb:YGG and Yb:LuGG crystals to be promising for compact highly efficient microchip lasers. In particular, Yb:LuGG microchip laser generated 8.97 W of output power with a slope efficiency η = 75% and 9.31 W with η = 65%, for pumping at 932 and 969 nm, respectively. Multi-watt output in the range 1039–1078 nm is emitted for different transmission of the output coupler. The sensitivity factor of the thermal lens for this crystal is 2.1 m−1/W (pumping at 969 nm with a pump waist radius of 100 μm) and the estimated thermal conductivity is 5.8 ± 0.5 W/mK. Power scaling of Yb:CNGG and Yb:CLNGG microchip lasers is limited by poor thermo-optic properties and high internal losses. Ordered Ga garnets show good prospects for the development of passively Q-switched microchip lasers with high pulse energies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu)

Wenjuan Han, Kui Wu, Xueping Tian, Linhua Xia, Huaijin Zhang, and Junhai Liu
Opt. Mater. Express 3(7) 920-927 (2013)

Highly efficient Q-switched laser operation of Yb:Y3Ga5O12 garnet crystal

Junhai Liu, Xueping Tian, Kui Wu, Qibiao Dai, Wenjuan Han, and Huaijin Zhang
Opt. Express 21(3) 2624-2631 (2013)

Efficient laser-diode-pumped neodymium-doped calcium–niobium–gallium–garnet laser

Kenta Naito, Atsushi Yokotani, Takatomo Sasaki, Takashi Okuyama, Masanobu Yamanaka, Masahiro Nakatsuka, Sadao Nakai, Tsuguo Fukuda, and M. I. Timoshechkin
Appl. Opt. 32(36) 7387-7390 (1993)

References

  • View by:
  • |
  • |
  • |

  1. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
    [Crossref]
  2. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [Crossref]
  3. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
    [Crossref] [PubMed]
  4. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
    [Crossref]
  5. J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
    [Crossref]
  6. W. Han, K. Wu, X. Tian, L. Xia, H. Zhang, and J. Liu, “Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu),” Opt. Mater. Express 3(7), 920–927 (2013).
    [Crossref]
  7. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
    [Crossref]
  8. K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B 29(9), 2320–2328 (2012).
    [Crossref]
  9. X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13(19), 7708–7719 (2005).
    [Crossref] [PubMed]
  10. Y. Zhang, Z. Wei, Q. Wang, D. Li, Z. Zhang, H. Yu, H. Zhang, J. Wang, and L. Lv, “Diode-pumped efficient continuous-wave Yb:Y3Ga5O12 laser at 1035 nm,” Opt. Lett. 36(4), 472–474 (2011).
    [Crossref] [PubMed]
  11. Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
    [Crossref] [PubMed]
  12. Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
    [Crossref]
  13. H. Zhang, J. Liu, J. Wang, J. Fan, X. Tao, X. Mateos, V. Petrov, and M. Jiang, “Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG,” Opt. Express 15(15), 9464–9469 (2007).
    [Crossref] [PubMed]
  14. V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
    [Crossref]
  15. A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
    [Crossref]
  16. J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
    [Crossref]
  17. J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
    [Crossref]
  18. Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
    [Crossref] [PubMed]
  19. A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
    [Crossref]
  20. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
    [Crossref]
  21. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
    [Crossref]
  22. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  23. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
    [Crossref]
  24. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
    [Crossref]
  25. J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
    [Crossref]
  26. P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
    [Crossref]
  27. P. Loiko, F. Druon, P. Georges, B. Viana, and K. Yumashev, “Thermo-optic characterization of Yb:CaGdAlO4 laser crystal,” Opt. Mater. Express 4(11), 2241–2249 (2014).
    [Crossref]
  28. M. J. Weber, Handbook of optical materials (CRC Press, New York, 2003).
  29. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  30. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
    [Crossref]
  31. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

2013 (1)

2012 (4)

K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B 29(9), 2320–2328 (2012).
[Crossref]

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

2011 (1)

2010 (2)

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

2009 (2)

2007 (3)

2006 (2)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
[Crossref] [PubMed]

2005 (2)

X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13(19), 7708–7719 (2005).
[Crossref] [PubMed]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

2003 (2)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[Crossref]

2002 (2)

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

2001 (1)

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

1999 (1)

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[Crossref]

1997 (1)

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Achim, A.

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Aguiló, M.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Bass, M.

Boughton, R. I.

Boulon, G.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Brenier, A.

X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13(19), 7708–7719 (2005).
[Crossref] [PubMed]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Byer, R. L.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chang, J.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Choi, S. Y.

Deng, P.

Díaz, F.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

Ding, S.

Dong, J.

Druon, F.

P. Loiko, F. Druon, P. Georges, B. Viana, and K. Yumashev, “Thermo-optic characterization of Yb:CaGdAlO4 laser crystal,” Opt. Mater. Express 4(11), 2241–2249 (2014).
[Crossref]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Eskov, N. A.

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Fan, J.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Gan, F.

Georges, P.

P. Loiko, F. Druon, P. Georges, B. Viana, and K. Yumashev, “Thermo-optic characterization of Yb:CaGdAlO4 laser crystal,” Opt. Mater. Express 4(11), 2241–2249 (2014).
[Crossref]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Gheorghe, C.

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

Gheorghe, L.

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Griebner, U.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
[Crossref] [PubMed]

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

Gwak, J. Y.

Han, Sh.

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

Han, W.

W. Han, K. Wu, X. Tian, L. Xia, H. Zhang, and J. Liu, “Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu),” Opt. Mater. Express 3(7), 920–927 (2013).
[Crossref]

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

Hao, L.

Ikesue, A.

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

Jiang, M.

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

H. Zhang, J. Liu, J. Wang, J. Fan, X. Tao, X. Mateos, V. Petrov, and M. Jiang, “Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG,” Opt. Express 15(15), 9464–9469 (2007).
[Crossref] [PubMed]

Kaminskii, A. A.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[Crossref]

Karasik, A. Ya.

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Kobayashi, T.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Kong, W.

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kuleshov, N.

Kuleshov, N. V.

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

Kurimura, S.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Li, D.

Li, P.

Li, S.

Liu, J.

Liu, J. H.

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

Loiko, P.

Loiko, P. A.

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

Lupei, A.

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Lv, L.

Mao, Y.

Mateos, X.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Osiac, E.

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Petraru, A.

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Petrov, V.

Rabochkina, P. A.

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Rogobete, L.

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Rotermund, F.

Saikawa, J.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Sato, Y.

Schmidt, A.

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

Serres, J. M.

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Prospects of monoclinic Yb:KLu(WO4)2 crystal for multi-watt microchip lasers,” Opt. Mater. Express 5(3), 661–667 (2015).
[Crossref]

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

Shirakawa, A.

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[Crossref]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

Shoji, I.

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

Sobol, A. A.

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Taira, T.

Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
[Crossref] [PubMed]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

Tao, X.

Tian, X.

W. Han, K. Wu, X. Tian, L. Xia, H. Zhang, and J. Liu, “Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu),” Opt. Mater. Express 3(7), 920–927 (2013).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B 29(9), 2320–2328 (2012).
[Crossref]

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

Ueda, K.

Ueda, K.-I.

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[Crossref]

Ushakov, S. N.

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Viana, B.

Voronko, Yu. K.

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Wan, Y.

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

Wang, J.

K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B 29(9), 2320–2328 (2012).
[Crossref]

Y. Zhang, Z. Wei, Q. Wang, D. Li, Z. Zhang, H. Yu, H. Zhang, J. Wang, and L. Lv, “Diode-pumped efficient continuous-wave Yb:Y3Ga5O12 laser at 1035 nm,” Opt. Lett. 36(4), 472–474 (2011).
[Crossref] [PubMed]

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
[Crossref] [PubMed]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
[Crossref] [PubMed]

H. Zhang, J. Liu, J. Wang, J. Fan, X. Tao, X. Mateos, V. Petrov, and M. Jiang, “Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG,” Opt. Express 15(15), 9464–9469 (2007).
[Crossref] [PubMed]

Wang, Q.

Wang, Y.

Wang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

X. Zhang, A. Brenier, Q. Wang, Z. Wang, J. Chang, P. Li, S. Zhang, S. Ding, and S. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13(19), 7708–7719 (2005).
[Crossref] [PubMed]

Wei, Z.

Wu, K.

Xia, L.

Xu, C.

Yagi, H.

Yanagitani, T.

Yao, B.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
[Crossref] [PubMed]

Yu, H.

Yumashev, K.

Yumashev, K. V.

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[Crossref]

Zhang, H.

Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
[Crossref] [PubMed]

W. Han, K. Wu, X. Tian, L. Xia, H. Zhang, and J. Liu, “Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu),” Opt. Mater. Express 3(7), 920–927 (2013).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B 29(9), 2320–2328 (2012).
[Crossref]

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

Y. Zhang, Z. Wei, Q. Wang, D. Li, Z. Zhang, H. Yu, H. Zhang, J. Wang, and L. Lv, “Diode-pumped efficient continuous-wave Yb:Y3Ga5O12 laser at 1035 nm,” Opt. Lett. 36(4), 472–474 (2011).
[Crossref] [PubMed]

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
[Crossref] [PubMed]

H. Zhang, J. Liu, J. Wang, J. Fan, X. Tao, X. Mateos, V. Petrov, and M. Jiang, “Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG,” Opt. Express 15(15), 9464–9469 (2007).
[Crossref] [PubMed]

Zhang, S.

Zhang, X.

Zhang, Y.

Zhang, Z.

Zhou, B.

Zhou, Z.

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B 29(9), 2320–2328 (2012).
[Crossref]

Zhou, Zh.

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

Zou, Y.

Appl. Phys. B (2)

J. H. Liu, Y. Wan, Z. Zhou, X. Tian, W. Han, and H. Zhang, “Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG,” Appl. Phys. B 109(2), 183–188 (2012).
[Crossref]

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
[Crossref]

J. Appl. Phys. (2)

V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, and A. Ikesue, “Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics,” J. Appl. Phys. 112(6), 063110 (2012).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

P. A. Loiko, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal lensing in Yb:KLu(WO4)2 crystals cut along the optical indicatrix axes,” Laser Phys. Lett. 11(12), 125802 (2014).
[Crossref]

J. Liu, W. Kong, X. Tian, Zh. Zhou, W. Han, Sh. Han, and H. Zhang, “Efficient laser oscillation of a new disordered Yb:CLNGG crystal,” Laser Phys. Lett. 9(5), 394–397 (2012).
[Crossref]

Opt. Commun. (1)

A. Schmidt, U. Griebner, H. Zhang, J. Wang, M. Jiang, J. Liu, and V. Petrov, “Passive mode-locking of the Yb:CNGG laser,” Opt. Commun. 283(4), 567–569 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (6)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: Comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[Crossref]

Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, and S. N. Ushakov, “Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions – effective laser media,” Opt. Mater. 20(3), 197–209 (2002).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009).
[Crossref]

J. Saikawa, S. Kurimura, I. Shoji, and T. Taira, “Tunable frequency-doubled Yb:YAG microchip lasers,” Opt. Mater. 19(1), 169–174 (2002).
[Crossref]

A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, and A. Petraru, “The nature of nonequivalent Nd3+ centers in CNGG and CLNGG,” Opt. Mater. 16(3), 403–411 (2001).
[Crossref]

Opt. Mater. Express (4)

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (1)

M. J. Weber, Handbook of optical materials (CRC Press, New York, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Emission spectra of the employed laser diodes for various values of their output power.
Fig. 2
Fig. 2 Absorption in the Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c), and Yb:CLNGG (d) crystals vs. incident pump power for the two pump diodes employed.
Fig. 3
Fig. 3 Absorption (a) and stimulated-emission (b) cross-section spectra of the studied Yb-doped gallium garnets.
Fig. 4
Fig. 4 Optical power of the thermal lens vs. absorbed power at 969 nm for Yb-doped gallium garnets: symbols are the experimental data, lines are for the calculation of the sensitivity factor. The laser wavelength is ~1048 nm.
Fig. 5
Fig. 5 Input-output dependences for microchip lasers based on Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d) crystals. The pump wavelength is ~932 nm, η - slope efficiency.
Fig. 6
Fig. 6 Microchip laser emission spectra for Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d) diode-pumped at 932 nm. The absorbed power is 7 W.
Fig. 7
Fig. 7 Calculated gain cross-sections of Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d) crystals for different inversion ratios β.
Fig. 8
Fig. 8 Input-output dependences for microchip lasers based on Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d). The pump wavelength is 969 nm, η - slope efficiency.
Fig. 9
Fig. 9 Optical-to-optical efficiency ηopt for microchip lasers based on Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d) crystals, TOC = 10%.
Fig. 10
Fig. 10 Modeling of output performance of Yb:LuGG (a) and Yb:CNGG (b) lasers with Eq. (2), points – experimental data, lines are calculations; TOC = 10%. Numbers on the graph correspond to modeling.

Tables (5)

Tables Icon

Table 1 Compositional and Geometrical Parameters of the Studied Laser Crystals

Tables Icon

Table 2 Output Characteristics of the Microchip Lasers Based on Gallium Garnets Pumped at 932 nm

Tables Icon

Table 3 Output Characteristics of the Microchip Lasers Based on Gallium Garnets Pumped at 969 nm

Tables Icon

Table 4 Loss Coefficient for the Studied Crystals Estimated from the Caird Plot

Tables Icon

Table 5 Comparison of Figure-of-Merits* for Yb-Doped Garnets**

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M r,θ = η h 2π w p 2 κ χ r,θ
P th = h ν p τ Yb k Σ + σ abs l N Yb σ abs l + σ SE l l act π w p 2 ,
P out = w l 2 w p 2 k OC k Σ ν p ν l ( P abs P th ).

Metrics