Abstract

Chemical composition is the primary factor that determines the electronic band structure and thus also influences the optical properties of plasmonic ceramics including nitrides and oxides. In this work, the optical and plasmonic properties of TiN, ZrN and their hypothetical intermediate alloys Ti1-xZrxN (x = 0, 0.25, 0.50, 0.75, and 1), are studied by using first-principles density functional theory. We demonstrate the effects of electronic band structure tuning (band engineering) on the dielectric properties by varying the concentration of metallic constituents. Our calculations reveal that bulk plasma frequency, onset of interband transitions, width of bulk plasmon resonance and cross-over frequency, can be tuned flexibly in visible spectrum region by varying the amount of Zr concentration in Ti1-xZrxN alloy system. We found that low threshold interband energy onset (~1.95 eV) leads to high losses in Ti rich compounds than that of ZrN which points to lower losses.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of localized surface plasmon resonance of TiN nanoparticles in TiNxOy thin films

J. Zhang, T. P. Chen, X. D. Li, Y. C. Liu, Y. Liu, and H. Y. Yang
Opt. Mater. Express 6(7) 2422-2433 (2016)

Ultraviolet-visible interband plasmonics with p-block elements

Johann Toudert and Rosalía Serna
Opt. Mater. Express 6(7) 2434-2447 (2016)

Dielectric properties of the silver–copper alloy films deposited by magnetron sputtering

Guang Yang, Xiaojian Fu, and Ji Zhou
J. Opt. Soc. Am. B 30(2) 282-287 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
    [Crossref] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express 12(22), 5481–5486 (2004).
    [Crossref] [PubMed]
  4. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
    [Crossref] [PubMed]
  5. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  6. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  7. V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
    [Crossref] [PubMed]
  8. J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
    [Crossref] [PubMed]
  9. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref] [PubMed]
  10. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter 22(9), 095501 (2010).
    [Crossref] [PubMed]
  11. U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref] [PubMed]
  12. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  13. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
    [Crossref]
  14. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  15. P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
    [Crossref]
  16. J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
    [Crossref]
  17. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
    [Crossref]
  18. U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
    [Crossref] [PubMed]
  19. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
    [Crossref] [PubMed]
  20. G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
    [Crossref]
  21. G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601–659 (2002).
    [Crossref]
  22. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
    [Crossref] [PubMed]
  23. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
    [Crossref]
  24. A. Calzolari, A. Ruini, and A. Catellani, “Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,” ACS Photonics 1(8), 703–709 (2014).
    [Crossref]
  25. K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
    [Crossref]
  26. S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
    [Crossref] [PubMed]
  27. J. Kim, S.-H. Jhi, and K. Ryeol Lee, “Color of TiN and ZrN from first-principles calculations,” J. Appl. Phys. 110(8), 083501 (2011).
    [Crossref]
  28. G. D. Mahan, Many-Particle Physics (Springer, 2000).
  29. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
    [Crossref]
  30. M. Kumar, H. Zhao, and C. Persson, “Study of band-structure, optical properties and native defects in A(I)B(III)O(2) (A(I) = Cu or Ag, B-III = Al, Ga or In) delafossites,” Semicond. Sci. Technol. 28(6), 065003 (2013).
    [Crossref]
  31. M. Kumar, N. Umezawa, and M. Imai, “(Sr,Ba)(Si,Ge)2 for thin-film solar-cell applications: First-principles study,” J. Appl. Phys. 115(20), 203718 (2014).
    [Crossref]
  32. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
    [Crossref] [PubMed]
  33. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  34. V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
    [Crossref]
  35. S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
    [Crossref] [PubMed]
  36. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  37. B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
    [Crossref]
  38. P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
    [Crossref]
  39. J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
    [Crossref]
  40. J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
    [Crossref] [PubMed]
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  42. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  43. U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
    [Crossref]
  44. S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Sunlight absorbing titanium nitride nanoparticles,” ICTON 2015 proceeding.
    [Crossref]

2015 (3)

V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
[Crossref] [PubMed]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

2014 (5)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

A. Calzolari, A. Ruini, and A. Catellani, “Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

M. Kumar, N. Umezawa, and M. Imai, “(Sr,Ba)(Si,Ge)2 for thin-film solar-cell applications: First-principles study,” J. Appl. Phys. 115(20), 203718 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

2013 (6)

M. Kumar, H. Zhao, and C. Persson, “Study of band-structure, optical properties and native defects in A(I)B(III)O(2) (A(I) = Cu or Ag, B-III = Al, Ga or In) delafossites,” Semicond. Sci. Technol. 28(6), 065003 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

2012 (4)

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

2011 (2)

J. Kim, S.-H. Jhi, and K. Ryeol Lee, “Color of TiN and ZrN from first-principles calculations,” J. Appl. Phys. 110(8), 083501 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

2010 (4)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter 22(9), 095501 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

2009 (2)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[Crossref] [PubMed]

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

2008 (2)

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
[Crossref] [PubMed]

2006 (1)

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

2005 (1)

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

2004 (1)

2003 (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

2002 (1)

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601–659 (2002).
[Crossref]

2001 (1)

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

1996 (3)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
[Crossref]

1985 (1)

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

1984 (1)

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

1982 (1)

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Allard, L. F.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Alves, E.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Ambrosch-Draxl, C.

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

Amendola, V.

V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
[Crossref] [PubMed]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter 22(9), 095501 (2010).
[Crossref] [PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[Crossref] [PubMed]

Asaduzzaman, A.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baehr-Jones, T.

Banakh, O.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Bechstedt, F.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter 22(9), 095501 (2010).
[Crossref] [PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[Crossref] [PubMed]

Bohnen, K.

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

Bohnen, K. P.

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

Boltasseva, A.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
[Crossref]

Bonnet, N.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Bourgeois, S.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Butkus, J.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Calzolari, A.

A. Calzolari, A. Ruini, and A. Catellani, “Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Cao, J.

Carlton, C. E.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Carvalho, P.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Catellani, A.

A. Calzolari, A. Ruini, and A. Catellani, “Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Cavaleiro, A.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Chappé, J. M.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

Chateigner, D.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Cortie, M. B.

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

Crecelius, G.

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

Cunha, L.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Del Sole, R.

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Deymier, P.

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Downs, R. T.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Elizalde, E.

P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Everitt, H. O.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Fink, J.

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter 22(9), 095501 (2010).
[Crossref] [PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[Crossref] [PubMed]

Furthmüller, J.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Gajdoš, M.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

Gasteiger, H. A.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Glantschnig, K.

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

Glembocki, O. J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Goudeau, P.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Gražulis, S.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
[Crossref]

Halas, N. J.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Hamad-Schifferli, K.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Han, B.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Haygarth, J. C.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Hochberg, M.

Hogan, C.

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Hummer, K.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

Iatì, M. A.

V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
[Crossref] [PubMed]

Imai, M.

M. Kumar, N. Umezawa, and M. Imai, “(Sr,Ba)(Si,Ge)2 for thin-film solar-cell applications: First-principles study,” J. Appl. Phys. 115(20), 203718 (2014).
[Crossref]

Imhoff, L.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

Irudayaraj, J. M. K.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jhi, S.-H.

J. Kim, S.-H. Jhi, and K. Ryeol Lee, “Color of TiN and ZrN from first-principles calculations,” J. Appl. Phys. 110(8), 083501 (2011).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Karlsson, B.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Keast, V. J.

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

Kildishev, A. V.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
[Crossref] [PubMed]

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
[Crossref]

Kim, J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

J. Kim, S.-H. Jhi, and K. Ryeol Lee, “Color of TiN and ZrN from first-principles calculations,” J. Appl. Phys. 110(8), 083501 (2011).
[Crossref]

King, N. S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kresse, G.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Kumar, M.

M. Kumar, N. Umezawa, and M. Imai, “(Sr,Ba)(Si,Ge)2 for thin-film solar-cell applications: First-principles study,” J. Appl. Phys. 115(20), 203718 (2014).
[Crossref]

M. Kumar, H. Zhao, and C. Persson, “Study of band-structure, optical properties and native defects in A(I)B(III)O(2) (A(I) = Cu or Ag, B-III = Al, Ga or In) delafossites,” Semicond. Sci. Technol. 28(6), 065003 (2013).
[Crossref]

Laref, S.

Le Bail, A.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Le Bourhis, E.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Lee, S. W.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Liu, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Lutterotti, L.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Manakova, E.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Maragò, O. M.

V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
[Crossref] [PubMed]

Marco de Lucas, M. C.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

Marini, A.

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Marzari, N.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Miyawaki, M.

Moeck, P.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Moura, C.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Muralidharan, K.

Naik, G. V.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ni, X.

Nordlander, P.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Onida, G.

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601–659 (2002).
[Crossref]

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Palummo, M.

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Persson, C.

M. Kumar, H. Zhao, and C. Persson, “Study of band-structure, optical properties and native defects in A(I)B(III)O(2) (A(I) = Cu or Ag, B-III = Al, Ga or In) delafossites,” Semicond. Sci. Technol. 28(6), 065003 (2013).
[Crossref]

Persson, P. O. Å.

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

Pflüger, J.

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

Pierson, J. F.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prieto, P.

P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
[Crossref]

Prokes, S. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Pulci, O.

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Quirós, M.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Rebouta, L.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Reining, L.

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601–659 (2002).
[Crossref]

Rivìre, J. P.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Rubio, A.

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601–659 (2002).
[Crossref]

Ruini, A.

A. Calzolari, A. Ruini, and A. Catellani, “Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Runge, K.

Ryeol Lee, K.

J. Kim, S.-H. Jhi, and K. Ryeol Lee, “Color of TiN and ZrN from first-principles calculations,” J. Appl. Phys. 110(8), 083501 (2011).
[Crossref]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Saija, R.

V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
[Crossref] [PubMed]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Sanz, J. M.

P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
[Crossref]

Scherer, A.

Schmidt, W. G.

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Schroeder, J. L.

Seraphin, B. O.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Shalaev, V. M.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
[Crossref] [PubMed]

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
[Crossref]

Shao-Horn, Y.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shimshock, R. P.

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Suntivich, J.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Supansomboon, S.

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

Suslov, S.

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
[Crossref]

Tavares, C. J.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Umezawa, N.

M. Kumar, N. Umezawa, and M. Imai, “(Sr,Ba)(Si,Ge)2 for thin-film solar-cell applications: First-principles study,” J. Appl. Phys. 115(20), 203718 (2014).
[Crossref]

Vaz, F.

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

Walker, C.

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Weber, W.

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

West, J. L.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Xu, Z.

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

Yokochi, A. F. T.

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

Yubero, F.

P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
[Crossref]

Zhao, H.

M. Kumar, H. Zhao, and C. Persson, “Study of band-structure, optical properties and native defects in A(I)B(III)O(2) (A(I) = Cu or Ag, B-III = Al, Ga or In) delafossites,” Semicond. Sci. Technol. 28(6), 065003 (2013).
[Crossref]

Ziolkowski, R. W.

Zwan, B.

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

ACS Photonics (1)

A. Calzolari, A. Ruini, and A. Catellani, “Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,” ACS Photonics 1(8), 703–709 (2014).
[Crossref]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Appl. Phys. B (1)

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012).
[Crossref]

Faraday Discuss. (1)

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

V. J. Keast, B. Zwan, S. Supansomboon, M. B. Cortie, and P. O. Å. Persson, “AuAl2 and PtAl2 as potential plasmonic materials,” J. Alloys Compd. 577, 581–586 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, and Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation,” J. Am. Chem. Soc. 135(21), 7985–7991 (2013).
[Crossref] [PubMed]

J. Appl. Cryst. (1)

S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Cryst. 42(Pt 4), 726–729 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (3)

J. Kim, S.-H. Jhi, and K. Ryeol Lee, “Color of TiN and ZrN from first-principles calculations,” J. Appl. Phys. 110(8), 083501 (2011).
[Crossref]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J. P. Rivìre, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys. 98(2), 023715 (2005).
[Crossref]

M. Kumar, N. Umezawa, and M. Imai, “(Sr,Ba)(Si,Ge)2 for thin-film solar-cell applications: First-principles study,” J. Appl. Phys. 115(20), 203718 (2014).
[Crossref]

J. Phys. Condens. Matter (2)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter 22(9), 095501 (2010).
[Crossref] [PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

P. Prieto, F. Yubero, E. Elizalde, and J. M. Sanz, “Dielectric properties of Zr, ZrN, Zr3N4, and ZrO2 determined by quantitative analysis of electron energy loss spectra,” J. Vac. Sci. Technol. A 14(6), 3181 (1996).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Mater. Today (1)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

Nano Lett. (1)

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Nanoscale (1)

V. Amendola, R. Saija, O. M. Maragò, and M. A. Iatì, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale 7(19), 8782–8792 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys. 12(10), 103048 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (3)

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the PAW methodology,” Phys. Rev. B 73(4), 045112 (2006).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx,TiNx,VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B 30(3), 1155–1163 (1984).
[Crossref]

Phys. Rev. B Condens. Matter (2)

J. Pflüger, J. Fink, W. Weber, K. Bohnen, and G. Crecelius, “Dielectric properties of ZrN, NbC, and NbN as determined by electron-energy-loss spectroscopy,” Phys. Rev. B Condens. Matter 31(3), 1244–1247 (1985).
[Crossref] [PubMed]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment,” Phys. Rev. X 3(4), 041037 (2013).
[Crossref]

Phys. Scr. (1)

B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982).
[Crossref]

Phys. Status Solidi (1)

G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi 188(4), 1233–1242 (2001).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601–659 (2002).
[Crossref]

Science (1)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory Plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. Kumar, H. Zhao, and C. Persson, “Study of band-structure, optical properties and native defects in A(I)B(III)O(2) (A(I) = Cu or Ag, B-III = Al, Ga or In) delafossites,” Semicond. Sci. Technol. 28(6), 065003 (2013).
[Crossref]

Surf. Coat. Tech. (1)

J. M. Chappé, F. Vaz, L. Cunha, C. Moura, M. C. Marco de Lucas, L. Imhoff, S. Bourgeois, and J. F. Pierson, “Development of dark Ti(C,O,N) coatings prepared by reactive sputtering,” Surf. Coat. Tech. 203(5-7), 804–807 (2008).
[Crossref]

Other (4)

G. D. Mahan, Many-Particle Physics (Springer, 2000).

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications,” Nanophotonics4(1), arXiv:1410.3920v1 (2015).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Sunlight absorbing titanium nitride nanoparticles,” ICTON 2015 proceeding.
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Crystal structure of the ordered alloy compounds (a) 2 atoms primitive cell of TiN, (b) 8 atoms cell of TiN and (c) 8 atoms cell of Ti0.5Zr0.5N alloy. Here small grey balls represent N atom, whereas big blue and red ball represent Ti and Zr atoms, respectively.
Fig. 2
Fig. 2 Calculated electronic band structure of (a) TiN, (b) ZrN along high symmetry directions and (c) DOS of Ti1-xZrxN alloy compounds. The dotted horizontal and vertical lines indicate the Fermi-level in left and right side panels, respectively.
Fig. 3
Fig. 3 Calculated (a) Imaginary (optical losses) and (b) real permittivity in Au along with the individual contribution from intraband and interband transitions. Inset in Fig (a), shows the imaginary part at higher energy scale to observe other relevant peaks. Green solid line shows the experimental data for comparison.
Fig. 4
Fig. 4 Calculated (a) real permittivity, (b) imaginary permittivity, (c) loss function, and (d) normal incident reflectivity of Ti1-xZrxN (x = 0, 0.25, 0.5, 0.75 and 1) alloy system.
Fig. 5
Fig. 5 Comparison of (a) QLSPR and (b) QSPP of Ti1-xZrxN alloy system with those of Au (red line) and Ag (blue line).
Fig. 6
Fig. 6 Comparison of (a) scattering, (b) absorption and (c) integrated absorption efficiencies of Ti1-xZrxN alloy system with those of Au and Ag.

Tables (1)

Tables Icon

Table 1 Calculated optical parameters, plasma frequency (ωp), cross-over frequency (ωc), width of plasmon (WP), onset of interband transitions (ωint), and low-energy bulk plasmon peak (ELSpeak) of Ti1-xZrxN alloy system along with Au for comparison.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε intra (ω)+ ε inter (ω)
ε intra (ω)=1 ω p 2 ω(ω+iγ)
ELF(ω)=Im( 1 ε(ω) )
R(ω)= | (1 ε(ω) ) (1+ ε(ω) ) | 2
Q LSPR = ω d ε 1 (ω) d(ω) 2 ε 2 (ω)
Q SPP = ε 1 (ω) 2 ε 2 (ω)

Metrics