Abstract

Recent highly sensitive absorption measurements of lithium niobate (LiNbO3) show that within the spectral range between 500 and 2900 nm the transparency is limited by impurities such as iron or hydrogen. In order to reduce the residual absorption, 5-mol.-%-MgO-doped and undoped congruent as well as undoped stoichiometric LiNbO3 crystals are annealed in dry oxygen atmosphere. The extinction coefficient of the treated crystals is measured using whispering-gallery-resonator-based absorption spectroscopy. The conducted measurements show that the treatment of stoichiometric crystals leads to scattering centers. For the congruent material residual metallic ions like iron and copper dominate the absorption in the spectral region from 400–2000 nm, and oxidization only shifts the center of the absorption in our case from that of iron to that of copper, thus inhibiting reaching the theoretical loss limit. Nevertheless, starting from 2000 nm, where absorption caused by hydrogen dominates, annealing leads to a significant drop in absorption, narrowing here the gap to the theoretical loss limit.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer
Opt. Lett. 35(7) 1070-1072 (2010)

Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics

Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, and Hideki Hatano
Opt. Lett. 23(24) 1892-1894 (1998)

Green-induced blue absorption in MgO-doped lithium niobate crystals

Niklas Waasem, Ashot Markosyan, Martin M. Fejer, and Karsten Buse
Opt. Lett. 38(16) 2953-2956 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
    [Crossref]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  3. M. H. Dunn, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
    [Crossref] [PubMed]
  4. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [Crossref]
  5. L. Arizmendi, “Photonic applications of lithium niobate crystals,” phys. stat. sol. (a) 201, 253–283 (2004).
    [Crossref]
  6. M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express 23, 21690–21705 (2015).
    [Crossref] [PubMed]
  7. G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
    [Crossref]
  8. J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
    [Crossref] [PubMed]
  9. E. M. de Miguel-Sanz, M. Carrascosa, and L. Arizmendi, “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Phys. Rev. B 65, 165101 (2002).
    [Crossref]
  10. M. Falk and K. Buse, “Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals,” Appl. Phys. B 81, 853–855 (2005).
    [Crossref]
  11. A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys. 68, 5804–5809 (1990).
    [Crossref]
  12. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
    [Crossref]
  13. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [Crossref]
  14. J. R. Carruthers, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys. 42, 1846–1851 (1971).
    [Crossref]

2015 (1)

2010 (1)

2005 (1)

M. Falk and K. Buse, “Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals,” Appl. Phys. B 81, 853–855 (2005).
[Crossref]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” phys. stat. sol. (a) 201, 253–283 (2004).
[Crossref]

2002 (1)

E. M. de Miguel-Sanz, M. Carrascosa, and L. Arizmendi, “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Phys. Rev. B 65, 165101 (2002).
[Crossref]

2000 (1)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

1999 (1)

M. H. Dunn, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1990 (1)

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys. 68, 5804–5809 (1990).
[Crossref]

1986 (1)

M. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
[Crossref]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

1971 (2)

J. R. Carruthers, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys. 42, 1846–1851 (1971).
[Crossref]

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” phys. stat. sol. (a) 201, 253–283 (2004).
[Crossref]

E. M. de Miguel-Sanz, M. Carrascosa, and L. Arizmendi, “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Phys. Rev. B 65, 165101 (2002).
[Crossref]

Breunig, I.

Buse, K.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Carrascosa, M.

E. M. de Miguel-Sanz, M. Carrascosa, and L. Arizmendi, “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Phys. Rev. B 65, 165101 (2002).
[Crossref]

Carruthers, J. R.

J. R. Carruthers, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys. 42, 1846–1851 (1971).
[Crossref]

de Miguel-Sanz, E. M.

E. M. de Miguel-Sanz, M. Carrascosa, and L. Arizmendi, “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Phys. Rev. B 65, 165101 (2002).
[Crossref]

Dhar, A.

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys. 68, 5804–5809 (1990).
[Crossref]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Dunn, M. H.

M. H. Dunn, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Falk, M.

Fejer, M. M.

Fieberg, S.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Glass, A. M.

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[Crossref]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Hukriede, J.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

Ioakeimidi, K.

Jundt, D. H.

Kajiyama, M. C. C.

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Krätzig, E.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Kühnemann, F.

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Leidinger, M.

Lines, M.

M. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Mansingh, A.

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys. 68, 5804–5809 (1990).
[Crossref]

Negran, T. J.

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[Crossref]

Peithmann, K.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Peterson, G. E.

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[Crossref]

Phillips, C. R.

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Schwesyg, J. R.

Waasem, N.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Annu. Rev. Mater. Sci. (1)

M. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
[Crossref]

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[Crossref]

Appl. Phys. B (1)

M. Falk and K. Buse, “Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals,” Appl. Phys. B 81, 853–855 (2005).
[Crossref]

Appl. Phys. Lett. (1)

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

J. Appl. Phys. (2)

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys. 68, 5804–5809 (1990).
[Crossref]

J. R. Carruthers, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys. 42, 1846–1851 (1971).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

E. M. de Miguel-Sanz, M. Carrascosa, and L. Arizmendi, “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Phys. Rev. B 65, 165101 (2002).
[Crossref]

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

phys. stat. sol. (a) (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” phys. stat. sol. (a) 201, 253–283 (2004).
[Crossref]

Science (1)

M. H. Dunn, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Left: Scanning electron microscope picture of a WGR made out of LiNbO3. Right: The two applied annealing procedures. For both recipes a dry oxygen atmosphere is chosen. Heating and cooling ramps: ΔTslow: 7 °C/min, −6 °C/min; ΔTfast: 7 °C/min, −44 °C/min.
Fig. 2
Fig. 2 Absorption coefficient α for untreated samples (Tref, circles) and samples treated with the recipes Tslow and Tfast (triangles) for undoped (a) and 5-mol.-%-MgO-doped (b) congruent lithium niobate (CLN and MCLN) for ordinarily polarized light. Furthermore, the theoretical limit [6] for the undoped material is shown in both graphs (lines).
Fig. 3
Fig. 3 Optical microscopy pictures. Left: Untreated sample. No structures are visible. Middle: Treated sample. Right: Magnified picture of a treated sample. Micrometer-sized, chain-like structures are visible.

Metrics