Abstract

GaSb-based SESAM is successfully employed for passive mode locking of a Tm3+:CaGdAlO4 laser operating near 2 µm. The pulse duration is around 650 fs at a repetition rate ~100 MHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm

Alexander Gluth, Yicheng Wang, Valentin Petrov, Jonna Paajaste, Soile Suomalainen, Antti Härkönen, Mircea Guina, Günter Steinmeyer, Xavier Mateos, Stefano Veronesi, Mauro Tonelli, Jiang Li, Yubai Pan, Jingkun Guo, and Uwe Griebner
Opt. Express 23(2) 1361-1369 (2015)

Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs

Kejian Yang, Dirk Heinecke, Jonna Paajaste, Christoph Kölbl, Thomas Dekorsy, Soile Suomalainen, and Mircea Guina
Opt. Express 21(4) 4311-4318 (2013)

Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs

Veselin Aleksandrov, Alexander Gluth, Valentin Petrov, Ivan Buchvarov, Günter Steinmeyer, Jonna Paajaste, Soile Suomalainen, Antti Härkönen, Mircea Guina, Xavier Mateos, Francesc Díaz, and Uwe Griebner
Opt. Express 23(4) 4614-4619 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
    [Crossref]
  2. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  3. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36(19), 3912–3914 (2011).
    [Crossref] [PubMed]
  4. A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
    [Crossref]
  5. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm,” Opt. Lett. 31(8), 1103–1105 (2006).
    [Crossref] [PubMed]
  6. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
    [Crossref]
  7. B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
    [Crossref]
  8. G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: Towards a laser surgery with cellular precision,” Med. Laser Appl. 20(2), 135–139 (2005).
    [Crossref]
  9. P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO₄ oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39(20), 6001–6004 (2014).
    [Crossref] [PubMed]
  10. J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
    [Crossref]
  11. J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
    [Crossref]
  12. Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).
  13. V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
    [Crossref] [PubMed]
  14. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
    [Crossref]
  15. A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
    [Crossref] [PubMed]
  16. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys D 47(6), 065102 (2014).
    [Crossref]
  17. L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].
  18. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
    [Crossref] [PubMed]

2015 (6)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

2014 (3)

P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO₄ oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39(20), 6001–6004 (2014).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys D 47(6), 065102 (2014).
[Crossref]

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

2013 (1)

A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

2012 (1)

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

2008 (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
[Crossref]

2006 (2)

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm,” Opt. Lett. 31(8), 1103–1105 (2006).
[Crossref] [PubMed]

2005 (1)

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: Towards a laser surgery with cellular precision,” Med. Laser Appl. 20(2), 135–139 (2005).
[Crossref]

Aguiló, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Aleksandrov, V.

Baltuska, A.

Buchvarov, I.

Choi, S. Y.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Cormier, E.

Dergachev, A.

A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Descamps, D.

Di, J.

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Diaz, F.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Díaz, F.

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Druon, F.

Ducros, N.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Endl, E.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: Towards a laser surgery with cellular precision,” Med. Laser Appl. 20(2), 135–139 (2005).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Forget, N.

Fournier, D.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Fuji, T.

Galan, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Galvanauskas, A.

Gaponov, D.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Gecys, P.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Georges, P.

Gluth, A.

Goldner, P.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Griebner, U.

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys D 47(6), 065102 (2014).
[Crossref]

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Gu, X.

Guina, M.

Guo, J.

Härkönen, A.

Hartl, I.

Hideur, A.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Hüttmann, G.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: Towards a laser surgery with cellular precision,” Med. Laser Appl. 20(2), 135–139 (2005).
[Crossref]

Ishii, N.

Jiang, J.

Kaplan, D.

Kong, L.

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Kong, L. C.

Krausz, F.

Langrock, C.

Lavoute, L.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Li, J.

Liu, J.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Lv, Z.

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Ma, J.

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Mateos, X.

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Metzger, T.

Paajaste, J.

Pan, Y.

Pelc, J. S.

Petit, J.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Petrov, V.

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Phillips, C. R.

Pujol, M. C.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Qian, L.

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Qian, L. J.

Qin, Z.

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Qin, Z. P.

Raciukaitis, G.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Roger, J.-P.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Rotermund, F.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Sai, Q.

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Schmidt, A.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Segura, M.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Sévillano, P.

Silva, M.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Steinmeyer, G.

Suomalainen, S.

Teisset, C. Y.

Tonelli, M.

Veronesi, S.

Viana, B.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

Vodopyanov, K. L.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
[Crossref]

Voisiat, B.

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Wang, Y.

Xia, C.

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Xie, G.

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Xie, G. Q.

Xu, J.

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Xu, X.

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Xu, X. D.

Yao, C.

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: Towards a laser surgery with cellular precision,” Med. Laser Appl. 20(2), 135–139 (2005).
[Crossref]

Yeom, D.-I.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Yuan, P.

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Zhou, D.

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

Appl. Phys. Express (1)

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Diaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 µm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2- μm continuous wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[Crossref]

IEEE Phot. J. (1)

Z. Qin, G. Xie, L. Kong, P. Yuan, L. Qian, X. Xu, and J. Xu, “Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2-µm wavelength,” IEEE Phot. J. 7, 1500205 (2015).

J. Appl. Phys. (1)

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

J. Lumin. (1)

J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, and J. Xu, “Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals,” J. Lumin. 155, 101–107 (2014).
[Crossref]

J. Phys D (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys D 47(6), 065102 (2014).
[Crossref]

Laser Photonics Rev. (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
[Crossref]

Med. Laser Appl. (1)

G. Hüttmann, C. Yao, and E. Endl, “New concepts in laser medicine: Towards a laser surgery with cellular precision,” Med. Laser Appl. 20(2), 135–139 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (2)

A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

B. Voisiat, D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis, “Material processing with ultra-short pulse lasers working in 2 µm wavelength range,” Proc. SPIE 9350, 935014 (2015).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (1)

L. Kong, J. Ma, G. Xie, Z. Qin, P. Yuan, and L. Qian, “Passively mode-locked mid-infrared solid-state laser,” CLEO Pacific Rim 2015, Busan, Korea.24–28 Aug. (2015) paper [27A2-6].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of the cavity used for CW, tunable, and mode-locked operation of the Tm:CALGO laser.
Fig. 2
Fig. 2 CW and mode-locked (ML) laser performance of the Tm:CALGO laser: (a) output power versus absorbed pump power and linear fits for the slope efficiencies η, (b) spectral tunability for an absorbed pump power of ~1.3 W. The air transmission at normal conditions, calculated from the HITRAN database for a path length of 1 m, is shown by a grey line in (b).
Fig. 3
Fig. 3 Femtosecond ML of the Tm:CALGO laser by the GaSb-based SESAM no.2: (a) autocorrelation trace (black dots) and fit (red line) assuming a sech2-pulse shape, and (b) optical spectrum.
Fig. 4
Fig. 4 Radio frequency spectrum of the mode-locked Tm:CALGO laser: (a) 1 GHz span, (b) first beat note.

Tables (1)

Tables Icon

Table 1 Parameters of the studied SESAMs and results with the mode-locked Tm:CALGO laser (no prisms).

Metrics