Abstract

We report on self-suspended micro-resonators patterned in Z-cut lithium niobate on insulator substrates. The fabrication technique consists of two single steps, focused ion beam milling for the micro- and nano-structuring and subsequent SiO2 etching for the realization of thin self-suspended membranes. The fabrication process of a free-standing photonic crystal cavity and a suspended micro-disk is described and the linear and nonlinear optical properties of the micro-resonators are investigated at telecommunication wavelengths. The whispering gallery modes of the micro-disk are measured experimentally and compared to an analytical model. The fundamental transverse-electric polarized mode of the photonic crystal cavity is measured and compared to three dimensional finite difference time domain simulations. Second harmonic generation enhancement due to the field confinement in the cavity mode is demonstrated. These results are promising for the use of Z-cut lithium niobate self-suspended membranes as platforms for highly efficient miniaturized photonic devices for telecommunication applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal structures in ion-sliced lithium niobate thin films

Frederik Sulser, Gorazd Poberaj, Manuel Koechlin, and Peter Günter
Opt. Express 17(22) 20291-20300 (2009)

Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam

Darren Freeman, Steve Madden, and Barry Luther-Davies
Opt. Express 13(8) 3079-3086 (2005)

Quantum nanophotonics in diamond [Invited]

Tim Schröder, Sara L. Mouradian, Jiabao Zheng, Matthew E. Trusheim, Michael Walsh, Edward H. Chen, Luozhou Li, Igal Bayn, and Dirk Englund
J. Opt. Soc. Am. B 33(4) B65-B83 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  2. R. Schmidt and I. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
    [Crossref]
  3. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–1052 (1988).
    [Crossref] [PubMed]
  4. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
    [Crossref]
  5. S. Diziain, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal, “Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab,” Appl. Phys. Lett. 95, 101103 (2009).
    [Crossref]
  6. F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
    [Crossref] [PubMed]
  7. H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
    [Crossref]
  8. R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
    [Crossref]
  9. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
    [Crossref]
  10. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
    [Crossref]
  11. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
    [Crossref]
  12. M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
    [Crossref]
  13. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
    [Crossref] [PubMed]
  14. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
    [Crossref]
  15. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
    [Crossref] [PubMed]
  16. G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16, 6302–6316 (2008).
    [Crossref] [PubMed]
  17. L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39, 2094–2096 (2014).
    [Crossref] [PubMed]
  18. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  19. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  20. G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
    [Crossref]
  21. Such wafers are now commercially available ( http://www.nanoln.com ).
  22. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  23. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
    [Crossref] [PubMed]
  24. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [Crossref]
  25. J. Knight, G. Cheung, F. Jacques, and T. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2010).
  27. H. A. Hejase, “On the use of davidenko’s method in complex root search,” IEEE Trans. Microw. Theory Tech. 41, 141–143 (1993).
    [Crossref]
  28. H. Altug and J. Vuckovic, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005).
    [Crossref] [PubMed]
  29. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]

2015 (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

2012 (2)

2010 (4)

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

2009 (4)

2008 (1)

2005 (1)

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

1998 (1)

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

1997 (1)

1993 (1)

H. A. Hejase, “On the use of davidenko’s method in complex root search,” IEEE Trans. Microw. Theory Tech. 41, 141–143 (1993).
[Crossref]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

1988 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

1974 (1)

R. Schmidt and I. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Altug, H.

Andreani, L. C.

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Atikian, H. A.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Baida, F. I.

Bakhru, H.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bernal, M.-P.

Birks, T.

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Burek, M. J.

Burr, G. W.

Cai, L.

Cargill, G.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Cheung, G.

Collet, M.

Courjal, N.

Cross, L.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Diziain, S.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

S. Diziain, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal, “Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab,” Appl. Phys. Lett. 95, 101103 (2009).
[Crossref]

G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16, 6302–6316 (2008).
[Crossref] [PubMed]

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Findakly, T. K.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Galli, M.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Geiss, R.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Gerace, D.

Gischkat, T.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
[Crossref] [PubMed]

Guenter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Günter, P.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Han, H.

Harada, S.

S. Diziain, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal, “Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab,” Appl. Phys. Lett. 95, 101103 (2009).
[Crossref]

Hartung, H.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
[Crossref] [PubMed]

Hejase, H. A.

H. A. Hejase, “On the use of davidenko’s method in complex root search,” IEEE Trans. Microw. Theory Tech. 41, 141–143 (1993).
[Crossref]

Höche, T.

Hu, H.

Huang, I.-C.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Jacques, F.

Janunts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kaminow, I.

R. Schmidt and I. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Kley, E.-B.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
[Crossref] [PubMed]

Knight, J.

Koechlin, M.

Krauss, T. F.

Kumar, A.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Leonberger, F. J.

Levy, M.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Lin, Z.

Liu, R.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Loncar, M.

Lu, H.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Muralt, P.

S. Diziain, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal, “Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab,” Appl. Phys. Lett. 95, 101103 (2009).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

O’Faolain, L.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2010).

Osgood, R.

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Pertsch, T.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17, 20291–20300 (2009).
[Crossref] [PubMed]

Portalupi, S. L.

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Reardon, C.

Ricken, R.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Sadani, B.

Salut, R.

S. Diziain, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal, “Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab,” Appl. Phys. Lett. 95, 101103 (2009).
[Crossref]

Schmidt, R.

R. Schmidt and I. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

Schrempel, F.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
[Crossref] [PubMed]

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Stark, P.

Steinert, M.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

Stenger, V.

Suchoski, P. G.

Sulser, F.

Tünnermann, A.

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
[Crossref] [PubMed]

Ulliac, G.

Venkataraman, V.

Vuckovic, J.

Wang, C.

Wang, K.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Wesch, W.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34, 1426–1428 (2009).
[Crossref] [PubMed]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

Zhang, S.

Zilk, M.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Appl. Phys. Lett. (6)

R. Schmidt and I. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[Crossref]

S. Diziain, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal, “Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab,” Appl. Phys. Lett. 95, 101103 (2009).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97, 131109 (2010).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes,” Appl. Phys. Lett. 103, 251101 (2013).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103, 051117 (2013).
[Crossref]

M. Levy, R. Osgood, R. Liu, L. Cross, G. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, 2293–2295 (1998).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE J. Quant. Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Electron. 6, 69–82 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. A. Hejase, “On the use of davidenko’s method in complex root search,” IEEE Trans. Microw. Theory Tech. 41, 141–143 (1993).
[Crossref]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Laser Photon. Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. (1)

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater. 33, 19–21 (2010).
[Crossref]

Phys. Status Solidi A (1)

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Lithium niobate photonic crystals by combining focussed ion beam writing and ion-beam enhanced etching,” Phys. Status Solidi A 211, 2421–2425 (2014).
[Crossref]

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2010).

Such wafers are now commercially available ( http://www.nanoln.com ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a): Sketch of the contour shapes milled by FIB for the micro-disk fabrication. (b)–(e): Scanning electron microscopy images of a micro-disk (left) and a modified L3 PhC cavity (right) milled in Z-cut LNOI. Top: Top views. Bottom: Cross-sections after (d) and before (e) wet etching.

Fig. 2
Fig. 2

(a) Experimental transmission spectra measured from 1.52 μm to 1.57 μm (left) and from 1.53 μm to 1.55 μm (right). (b) Fast Fourier transform of the calculated transmission spectrum. Inset: Fast Fourier transforms of the calculated TE mn -polarized modes (blue curve) and of the calculated TM mn -polarized modes (red curve). (c) Fast Fourier transform of the measured transmission spectrum.

Fig. 3
Fig. 3

(a) Cross-polarized reflectivity spectrum of the fundamental harmonic of the first cavity mode. Inset: Field intensity of the first cavity mode calculated in the middle of the membrane. Points: Experimental data. Solid blue line: Lorentzian fit. (b) Spectrum of the generated second harmonic excited with an input polarization of 45° with respect to the line defect. Points: Experimental data. Solid blue line: Squared Lorentzian fit. (c) Generated second harmonic as a function of the incident polarization α. Crosses: Experimental data. Solid blue line: Fit with a cos4 α function. (d) Second harmonic generation power measured as a function of the input coupled power. Crosses: Experimental data. Solid blue line: Quadratic fit.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P x ( 2 ) = 4 d 31 E x E z 4 d 22 E x E y
P y ( 2 ) = 2 d 22 E x 2 + 2 d 22 E y 2 + 4 d 31 E y E z
P z ( 2 ) = 2 d 31 E x 2 + 2 d 31 E y 2 + 2 d 33 E z 2 ,

Metrics