Abstract

Photovoltaic light trapping theory and experiment do not always clearly demonstrate how much useful optical absorption is enhanced, as opposed to parasitic absorption that cannot improve efficiencies. In this work, we develop a flexible flux plane method for capturing these parasitic losses within finite-difference time-domain simulations, which was applied to three classical types of light trapping cells (e.g., periodic, random and plasmonic). Then, a 2 µm-thick c-Si cell with a correlated random front texturing and a plasmonic back reflector is optimized. In the best case, 36.60 mA/cm2 Jsc is achieved after subtracting 3.74 mA/cm2 of parasitic loss in a 2-µm-thick c-Si cell slightly above the Lambertian limit.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns

Angelo Bozzola, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 20(S2) A224-A244 (2012)

Combining tailor-made textures for light in-coupling and light trapping in liquid phase crystallized silicon thin-film solar cells

Grit Köppel, David Eisenhauer, Bernd Rech, and Christiane Becker
Opt. Express 25(12) A467-A472 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
    [Crossref] [PubMed]
  2. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt.: Res. Appl. 10, 235–241 (2002).
    [Crossref]
  3. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
    [Crossref] [PubMed]
  4. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
    [Crossref]
  5. X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121.
  6. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
    [Crossref]
  7. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
    [Crossref]
  8. H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys. 105, 094511 (2009).
    [Crossref]
  9. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
    [Crossref]
  10. H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
    [Crossref] [PubMed]
  11. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
    [Crossref]
  12. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  13. S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
    [Crossref] [PubMed]
  14. V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
    [Crossref] [PubMed]
  15. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
    [Crossref]
  16. A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
    [Crossref]
  17. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
    [Crossref] [PubMed]
  18. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2011).
    [Crossref] [PubMed]
  19. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
    [Crossref]
  20. R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
    [Crossref]
  21. K. Jager, M. Fischer, R. A. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
    [Crossref] [PubMed]
  22. V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
    [Crossref]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
    [Crossref]
  24. R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013).
    [Crossref]
  25. H. Chung, K. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
    [Crossref] [PubMed]
  26. T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from single and multiple bodies,” IEEE Trans. Antennas Propag. 41, 1703–1708 (1993).
    [Crossref]
  27. T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
    [Crossref]
  28. N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
    [Crossref]
  29. E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
    [Crossref]
  30. E. Hallynck and P. Bienstman, “Photonic crystal biosensor based on angular spectrum analysis,” Opt. Express 18, 18164–18170 (2010).
    [Crossref] [PubMed]
  31. J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
    [Crossref]
  32. M. T. Bettencourt, “Flux limiting embedded boundary technique for electromagnetic fdtd,” J. Comp. Phys. 227, 3141–3158 (2008).
    [Crossref]
  33. H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
    [Crossref]
  34. V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
    [Crossref] [PubMed]
  35. F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
    [Crossref]
  36. H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
    [Crossref]
  37. L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
    [Crossref]
  38. R. Ren, Y. Guo, and R. Zhu, “Design of a plasmonic back reflector for silicon nanowire decorated solar cells,” Opt. Lett. 37, 4245–4247 (2012).
    [Crossref] [PubMed]
  39. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
    [Crossref]
  40. P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
    [Crossref]
  41. Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
    [Crossref]
  42. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
    [Crossref] [PubMed]
  43. K. Knight, Mathematical Statistics (CRC Press, Boca Raton, Florida, 1999).
    [Crossref]

2015 (1)

H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
[Crossref]

2014 (1)

2013 (8)

K. Jager, M. Fischer, R. A. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
[Crossref]

R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013).
[Crossref]

2012 (6)

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref] [PubMed]

R. Ren, Y. Guo, and R. Zhu, “Design of a plasmonic back reflector for silicon nanowire decorated solar cells,” Opt. Lett. 37, 4245–4247 (2012).
[Crossref] [PubMed]

2011 (4)

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
[Crossref] [PubMed]

2010 (7)

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[Crossref]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

E. Hallynck and P. Bienstman, “Photonic crystal biosensor based on angular spectrum analysis,” Opt. Express 18, 18164–18170 (2010).
[Crossref] [PubMed]

2009 (4)

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys. 105, 094511 (2009).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

2008 (2)

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

M. T. Bettencourt, “Flux limiting embedded boundary technique for electromagnetic fdtd,” J. Comp. Phys. 227, 3141–3158 (2008).
[Crossref]

2007 (2)

E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref] [PubMed]

2002 (1)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt.: Res. Appl. 10, 235–241 (2002).
[Crossref]

1998 (1)

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

1997 (1)

N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[Crossref]

1993 (1)

T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from single and multiple bodies,” IEEE Trans. Antennas Propag. 41, 1703–1708 (1993).
[Crossref]

1992 (1)

T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
[Crossref]

1982 (1)

Alam, M. A.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121.

Alivisatos, A. P.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
[Crossref] [PubMed]

Atwater, H.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Atwater, H. A.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Bagnall, D.

R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013).
[Crossref]

Ballif, C.

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2011).
[Crossref] [PubMed]

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Bermel, P.

Bettencourt, M. T.

M. T. Bettencourt, “Flux limiting embedded boundary technique for electromagnetic fdtd,” J. Comp. Phys. 227, 3141–3158 (2008).
[Crossref]

Bienstman, P.

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
[Crossref]

Chavannes, N.

E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Choi, J.

H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
[Crossref]

Chung, H.

H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
[Crossref]

H. Chung, K. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
[Crossref] [PubMed]

Deceglie, M. G.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
[Crossref] [PubMed]

Deuflhard, P.

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Dewan, R.

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Felix, R.

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Ferry, V.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Ferry, V. E.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Fischer, M.

Fujiwara, H.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Gray, J. L.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

Green, M. A.

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt.: Res. Appl. 10, 235–241 (2002).
[Crossref]

Gu, M.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Guha, S.

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Guo, Y.

Ha, S.

H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
[Crossref]

Haase, C.

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

Hallynck, E.

Han, S. E.

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Haug, F.-J.

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2011).
[Crossref] [PubMed]

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Herzig, H. P.

Hongsingthong, A.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

Houshmand, B.

N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[Crossref]

Hozuki, N.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Isabella, O.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
[Crossref]

Itoh, T.

N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[Crossref]

Jager, K.

Jia, B.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Jia, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Jovanov, V.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

Jung, K.

H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
[Crossref]

H. Chung, K. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
[Crossref] [PubMed]

Jurgens, T.

T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
[Crossref]

Jurgens, T. G.

T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from single and multiple bodies,” IEEE Trans. Antennas Propag. 41, 1703–1708 (1993).
[Crossref]

Kanamori, Y.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Kaneda, N.

N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[Crossref]

Khan, M. R.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121.

Kimerling, L. C.

Knight, K.

K. Knight, Mathematical Statistics (CRC Press, Boca Raton, Florida, 1999).
[Crossref]

Knipp, D.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

Konagai, M.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

Kondo, M.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys. 105, 094511 (2009).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Kuster, N.

E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
[Crossref]

Lare, M. C. v.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

Li, H. B.

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Lundstrom, M.

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121.

Lundstrom, M. S.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

Luo, C.

Moore, T.

T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
[Crossref]

Nadobny, J.

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Naqavi, A.

Neufeld, E.

E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
[Crossref]

Niquille, X.

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Ouyang, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Owens, J. M.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Owens-Mawson, J.

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

Paeder, V.

Polman, A.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Python, M.

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Ren, R.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Sai, H.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys. 105, 094511 (2009).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Saito, K.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Samaras, T.

E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
[Crossref]

Santbergen, R.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Scharf, T.

Schropp, R.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Schropp, R. E.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Seebaß, M.

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Sesuraj, R. S.

R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013).
[Crossref]

Shi, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Sichanugrist, P.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

Sivec, L.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Smets, A. H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Söderström, K.

Söderström, T.

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
[Crossref]

Spinelli, P.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Stiebig, H.

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

Stokes, N.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Sullivan, D.

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Taflove, A.

T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from single and multiple bodies,” IEEE Trans. Antennas Propag. 41, 1703–1708 (1993).
[Crossref]

T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
[Crossref]

Tamang, A.

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

Tan, H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Tee, X.

Temple, T.

R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013).
[Crossref]

Terrazzoni-Daudrix, V.

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Umashankar, K.

T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
[Crossref]

Van de Groep, J.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Van Lare, M.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

van Swaaij, R. A.

Verhagen, E.

Verschuuren, M.

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Walters, R. J.

Wang, X.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121.

Wust, P.

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Yablonovitch, E.

Yan, B.

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Yang, J.

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Yue, G.

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Zeman, M.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
[Crossref]

K. Jager, M. Fischer, R. A. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Zeng, L.

Zhang, Y.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Zhu, R.

ACS Nano (1)

V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
[Crossref] [PubMed]

Appl. Phys. A (1)

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Appl. Phys. Express (1)

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[Crossref]

Appl. Phys. Lett. (6)

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Comp. Phys. Comm. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010).
[Crossref]

IEEE J. Photovolt. (3)

A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013).
[Crossref]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013).
[Crossref]

L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (2)

T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from single and multiple bodies,” IEEE Trans. Antennas Propag. 41, 1703–1708 (1993).
[Crossref]

T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[Crossref]

J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998).
[Crossref]

Int. J. Electronics (1)

H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015)
[Crossref]

J. Appl. Phys. (2)

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys. 105, 094511 (2009).
[Crossref]

J. Comp. Phys. (1)

M. T. Bettencourt, “Flux limiting embedded boundary technique for electromagnetic fdtd,” J. Comp. Phys. 227, 3141–3158 (2008).
[Crossref]

J. Opt. (1)

P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (4)

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012).
[Crossref] [PubMed]

Nature Mat. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Medicine and Biology (1)

E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007).
[Crossref]

Phys. Rev. Lett. (1)

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref] [PubMed]

Prog. Photovolt.: Res. Appl. (2)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt.: Res. Appl. 10, 235–241 (2002).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013).
[Crossref]

Solar Energy Mat. and Solar Cells (2)

R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013).
[Crossref]

F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micro-morph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009).
[Crossref]

Other (2)

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121.

K. Knight, Mathematical Statistics (CRC Press, Boca Raton, Florida, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of three thin-film crystalline silicon light-trapping plasmonic structures: (a) periodic (grating-like) texturing on the front and back surfaces, deposited conformally; (b) random texturing on the front and back surfaces, deposited conformally; (c) random texturing on the front surface combined with plasmonic nanoparticles near the back surface. For the greatest speed, parasitic absorption is calculated using flexible flux planes instead of volumetric integration. (see Fig. 3)

Fig. 2
Fig. 2

Computational cost of the main FDTD algorithm, the volume integration (VI) method and the proposed flexible flux plane (FFP) method. Note that transmission and reflection spectra can be computed either by combining FDTD with VI or FDTD with FFP. The cost is calculated for 100 × 100 × 300 cells with varying thickness (0—200 cells) of the dispersive material. A 10 nm grid spacing is assumed along all axes. (a) The number of multiplication operators used in each method versus dispersive material height. The inset figure represents the simulation geometry. (b) Memory consumption of each method versus dispersive material height.

Fig. 3
Fig. 3

Schematic illustration of methods of measuring flux density in the simulations: (a) A traditional approach to calculate transmitted and reflected power in FDTD simulations. The computation time goes as O ( N s 3 × N ω ) ; (c) where N s as the number of grid points in each spatial direction, as well as the total number of distinct frequencies; (b) The volume integration method, which separates different source of optical losses in the simulation – this method is considerably slower, and goes as O ( N s 3 × N ω ) ; (c) Flexible flux planes, for rapid, frequency-sensitive integration of parasitic losses, represent a generalization of the flux plane in (a). In each Yee cube, an arbitrary surface is closely approximated (if not exactly represented) by a pair of triangles with the same center and normal vector. Local field values are interpolated from the nearest six fields fixed on the Yee lattice; (d) The expanded schematic structure of the flexible flux planes in the x-y plane – an arbitrary surface can be approximated by this method.

Fig. 4
Fig. 4

Light trapping results for periodically textured conformal 1.0 µm-thick thin-film c-Si solar cells: (a) The experimental [36] and 3-D FDTD-simulated total absorption, which agree closely. Parasitic absorption is calculated by the proposed method; the total amount corresponds to 4.05 mA/cm2. The inset figure shows the simulation geometry. The super-cell has 1.5 µm periodicity; (b) Electric field intensity near the bottom part of the cell at the yz plane at λ = 800 nm on a log scale. Field intensity is normalized by the incident field. A highly localized electric field is observed near the silver back reflector, over a hundred times stronger than the active region. The localized field could be either propagating along the surface, or stationary near the edge of the random back reflector.

Fig. 5
Fig. 5

Light trapping results for randomly textured conformal 2.0 µm thin-film c-Si solar cells: (a) The experimental [6] and 3-D FDTD-simulated total absorption, which agree closely. Parasitic absorption is calculated by the proposed method; the total amount corresponds to 5.16 mA/cm2 in this case. The inset figure shows the simulation geometry. The supercell has 1 µm periodicity. The random texturing surface is generated by a correlated randomness algorithm [25], with maximum feature heights varying from 300 to 1000 nm; (b) Electric field intensity near the yz plane at λ = 800 nm on a log scale. Field intensity is normalized by incident field. A highly localized electric field was observed near the silver back reflector, over a hundred times stronger than the active region. The localized field could be either propagating along the surface, or stationary near the edge of the random back reflector.

Fig. 6
Fig. 6

Light trapping results for 2.0 µm thick c-Si solar cells using plasmon enhanced BRs (plasmonic particles of 600 nm diameter and 150 nm height); (a) The experimental [11] and 3-D FDTD-simulated total absorption, which agree well for most wavelengths. Total parasitic absorption is calculated to be 2.04 mA/cm2, while the amount of useful absorption is 24.01 mA/cm2. The inset figure shows the simulation geometry. The supercell has 1 µm periodicity; (b) Electric field profile at the yz plane at λ = 800 nm in log scale. Field intensity is normalized by the incident field. A highly localized electric field was observed near the edge of the Ag NP.

Fig. 7
Fig. 7

(a) Useful absorption (1RTFFP) and parasitic absorption (TFFP − T) spectra for a correlated random front surface combined with a plasmonic rear NP (black), and those spectra for an identical front surface combined with a flat BR (red). (b) Electric field profile of the cell with the NP at λ = 1058 nm (c) Electric field profile of the cell without the NP at λ = 1058 nm. Both field profiles have the same scale bar.

Fig. 8
Fig. 8

Optimized short circuit current as a function of texture height in two structures: first, a correlated random front texturing combined with a plasmon-enhanced BR (red) and second, an identical random front combined with the flat BR (blue). Standard errors are calculated for both curves using 5 identical trials. In the small texturing cells, the plasmonic NP gives rise to good light trapping with minimal parasitic loss. Once the correlated random front texturing achieves strong light trapping, the contribution of plasmonic NP gradually decreases, and finally saturates for highly textured cells.

Fig. 9
Fig. 9

(a) Useful and parasitic absorption spectra calculated for 2 µm thick c-Si solar cells with ideal light-trapping. The red solid curve means the fraction of useful absorption in the correlated random front surface with a plasmon enhanced BR, and the blue solid curve means the fraction of useful absorption in the pure random front texturing with a plasmon enhanced BR. Standard errors are calculated for both curves using 5 identical trials. Absorption of the optimized cells exceed the Lambertian limit at higher wavelengths and out-performs the purely random cells as well. Note that the parasitic absorption is pre-subtracted and plotted. Jpar,ideal at the optimized structure is 3.74 mA/cm2 and the reflected loss is 4.97 mA/cm2, while Jsc,ideal is 36.60 mA/cm2, which exceeds the Lambertian limit; (b) Front surface morphology of the optimized correlated random structure; (c) Front surface morphology of the pure random structure.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P t = n ω i j Re [ E ω , i , j * ( r ) × H ω , i , j ( r ) ] ,
P l o s s = ω 1 2 ε ( ω ) ε 0 i j k | E ω , i , j , k ( r ) | 2 ,
P t = ω i j n i c , j c Re [ E ω , i c , j c * ( r ) × H ω , i c , j c ( r ) S i c , j c ] ,
J sc = 0 d λ [ e λ h c d I d λ A total ( λ ) IQE ( λ ) ] , and
J par = 0 d λ [ e λ h c d I d λ A par ( λ ) IQE ( λ ) ] ,
J sc , ideal = 300 nm 1100 nm d λ [ e λ h c d I d λ A Si ( λ ) ] , and
J par , ideal = 300 nm 1100 nm d λ [ e λ h c d I d λ A par ( λ ) ]

Metrics