Abstract

We report Er3+-doping, Mg2+-codoping and crystal composition effects on emission and absorption cross sections of Er3+-only doped and Er3+/Mg2+-codoped LiNbO3 crystals, in which Er3+ concentration ranges from 0.3 to 2.7 mol% and Mg2+ concentration from 1.2 to 7.4 mol%. The emission cross section spectra were calculated from the measured fluorescent spectra and the absorption cross section spectra were computed using the McCumber relation. The results show that increasing Er3+ concentration tends to decrease the cross section, while codoping with Mg2+ or increasing crystal composition tends to increase the cross section. As the composition is close to the stoichiometry, the cross section value tends to a constant. These effects are related to Er3+ site redistribution induced by doping or crystal composition alteration.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical-damage-resistant impurities in lithium niobate

T. Volk, N. Rubinina, and M. Wöhlecke
J. Opt. Soc. Am. B 11(9) 1681-1687 (1994)

Suppression of optical damage at 532 nm in Holmium doped congruent lithium niobate

Eftihia Barnes, Nathan H. O’Connell, Nicolas R. Balli, Madhab Pokhrel, Anush Movsesyan, Edvard Kokanyan, and Dhiraj K. Sardar
Opt. Express 22(21) 26222-26231 (2014)

Investigation on the OH absorption and blue photorefractive properties in Zr:Ru:Fe:LiNbO3 crystals as a function of Li composition

Chao Xu, Zuotao Lei, Chongqiang Zhu, Chunhui Yang, Chunlei Zhang, Ting Sun, Rui Wang, and Yuheng Xu
J. Opt. Soc. Am. B 29(10) 2814-2818 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
    [Crossref]
  2. G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
    [Crossref]
  3. E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
    [Crossref]
  4. C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
    [Crossref]
  5. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  6. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
    [Crossref]
  7. C. H. Huang, L. McCaughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12(5), 803–809 (1994).
    [Crossref]
  8. P. L. Pernas and E. Cantelar, “Emission and absorption cross-section calculation of rare earth doped materials for applications to integrated optic devices,” Phys. Scr. T 118, 93–97 (2005).
    [Crossref]
  9. J. A. Lázaro, J. A. Vallés, and M. A. Rebolledo, “In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states,” IEEE J. Quantum Electron. 35(5), 827–831 (1999).
    [Crossref]
  10. M. A. Rebolledo, J. A. Vallés, and S. Setién, “In situ measurement of polarization-resolved emission and absorption cross sections of Er-doped Ti:LiNbO3 waveguides,” J. Opt. Soc. Am. B 19(7), 1516–1520 (2002).
    [Crossref]
  11. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
    [Crossref]
  12. K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
    [Crossref]
  13. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
    [Crossref]
  14. L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
    [Crossref]
  15. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
    [Crossref]
  16. D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter 53(5), 2334–2344 (1996).
    [Crossref] [PubMed]

2005 (2)

P. L. Pernas and E. Cantelar, “Emission and absorption cross-section calculation of rare earth doped materials for applications to integrated optic devices,” Phys. Scr. T 118, 93–97 (2005).
[Crossref]

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

2003 (1)

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

2002 (1)

2001 (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

2000 (2)

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

1999 (1)

J. A. Lázaro, J. A. Vallés, and M. A. Rebolledo, “In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states,” IEEE J. Quantum Electron. 35(5), 827–831 (1999).
[Crossref]

1997 (1)

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

1996 (2)

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter 53(5), 2334–2344 (1996).
[Crossref] [PubMed]

1995 (1)

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

1994 (1)

C. H. Huang, L. McCaughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12(5), 803–809 (1994).
[Crossref]

1993 (2)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Balsamo, S.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Becker, Ch.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Betzler, K.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Cantelar, E.

P. L. Pernas and E. Cantelar, “Emission and absorption cross-section calculation of rare earth doped materials for applications to integrated optic devices,” Phys. Scr. T 118, 93–97 (2005).
[Crossref]

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

Corradi, G.

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Cusso, F.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

da Silva, M. F.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Gather, B.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Gill, D. M.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter 53(5), 2334–2344 (1996).
[Crossref] [PubMed]

C. H. Huang, L. McCaughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12(5), 803–809 (1994).
[Crossref]

Grachev, V. G.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Grundkotter, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Hage-Ali, M.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Hofmann, D.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Huang, C. H.

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

C. H. Huang, L. McCaughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12(5), 803–809 (1994).
[Crossref]

Iyi, N.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Jermann, F.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Kimura, S.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Klauer, S.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Kokanyan, E. P.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Kovacs, L.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Kovács, L.

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Lázaro, J. A.

J. A. Lázaro, J. A. Vallés, and M. A. Rebolledo, “In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states,” IEEE J. Quantum Electron. 35(5), 827–831 (1999).
[Crossref]

Lee, Y. L.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Lengyel, K.

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

Lifante, G.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

Malovichko, G. I.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

McCaughan, L.

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter 53(5), 2334–2344 (1996).
[Crossref] [PubMed]

C. H. Huang, L. McCaughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12(5), 803–809 (1994).
[Crossref]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Montrosset, I.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Oesselke, T.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Pandavenes, J.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Pernas, P. L.

P. L. Pernas and E. Cantelar, “Emission and absorption cross-section calculation of rare earth doped materials for applications to integrated optic devices,” Phys. Scr. T 118, 93–97 (2005).
[Crossref]

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

Péter, Á.

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

Polgar, K.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Polgár, K.

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Quiring, V.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Rebolledo, M. A.

M. A. Rebolledo, J. A. Vallés, and S. Setién, “In situ measurement of polarization-resolved emission and absorption cross sections of Er-doped Ti:LiNbO3 waveguides,” J. Opt. Soc. Am. B 19(7), 1516–1520 (2002).
[Crossref]

J. A. Lázaro, J. A. Vallés, and M. A. Rebolledo, “In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states,” IEEE J. Quantum Electron. 35(5), 827–831 (1999).
[Crossref]

Rebouta, L.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Ricken, R.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Rochhausen, K.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Ruschhaupt, G.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Sanz-Garcia, J. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Sato, M.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Schirmer, O. F.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Schlarb, U.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Schreiber, G.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Schreiberg, G.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Sciancalepore, D.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Setién, S.

Siffert, P.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Soares, J. C.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Sohler, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Stoquert, J. P.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Suche, H.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Szaller, Zs.

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Torchia, G. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

Vallés, J. A.

M. A. Rebolledo, J. A. Vallés, and S. Setién, “In situ measurement of polarization-resolved emission and absorption cross sections of Er-doped Ti:LiNbO3 waveguides,” J. Opt. Soc. Am. B 19(7), 1516–1520 (2002).
[Crossref]

J. A. Lázaro, J. A. Vallés, and M. A. Rebolledo, “In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states,” IEEE J. Quantum Electron. 35(5), 827–831 (1999).
[Crossref]

Wessel, R.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Wohlecke, M.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

Wöhlecke, M.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Wright, J. C.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter 53(5), 2334–2344 (1996).
[Crossref] [PubMed]

Yajima, Y.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Appl. Phys. Lett. (4)

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83(15), 2991–2993 (2003).
[Crossref]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Appl. Phys., A Solids Surf. (1)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wohlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys., A Solids Surf. 56, 103–108 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Lázaro, J. A. Vallés, and M. A. Rebolledo, “In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states,” IEEE J. Quantum Electron. 35(5), 827–831 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2(2), 367–372 (1996).
[Crossref]

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

J. Lightwave Technol. (1)

C. H. Huang, L. McCaughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12(5), 803–809 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

L. Kovacs, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, J. A. Sanz-Garcia, G. Corradi, Zs. Szaller, and K. Polgar, “On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals,” J. Phys. Condens. Matter 5(7), 781–794 (1993).
[Crossref]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118(1), 148–152 (1995).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B Condens. Matter 53(5), 2334–2344 (1996).
[Crossref] [PubMed]

Phys. Scr. T (1)

P. L. Pernas and E. Cantelar, “Emission and absorption cross-section calculation of rare earth doped materials for applications to integrated optic devices,” Phys. Scr. T 118, 93–97 (2005).
[Crossref]

Phys. Status Solidi (1)

K. Lengyel, Á. Péter, K. Polgár, L. Kovács, and G. Corradi, “UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold,” Phys. Status Solidi 2, 171–174 (2005).
[Crossref]

Proc. SPIE (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 σ-polarized 1530 nm emission (a) and absorption (b) cross section peaks of congruent LNs doped with different Er3+ concentrations.
Fig. 2
Fig. 2 σ-polarized 1530 nm emission (a) and absorption (b) cross section versus Er3+ doping level. Red/green balls: Er3+- only doped congruent/NS LNs; blue/magenta asterisks: Er3+/Mg2+-codoped congruent/NS LNs.
Fig. 3
Fig. 3 σ-polarized 1530 nm emission (a) and absorption (b) cross sections of congruent LNs with similar Er3+ but different Mg2+ concentrations.
Fig. 4
Fig. 4 σ-polarized 1530 nm emission (a) and absorption (b) cross section peaks of NS LNs doped with different Er3+ concentrations.

Tables (2)

Tables Icon

Table 1 Dopant concentration, Li/Nb ratio and σ, π, unpolarized emission (σe) and absorption (σa) cross section values ( × 10−20 cm2) of 551, 864, 980 1530 and 2700 nm transitions of only Er 3+-doped congruent and NS LNs.

Tables Icon

Table 2 Dopant concentration, Li/Nb ratio and σ, π, unpolarized emission (σe) and absorption (σa) cross section values ( × 10−20 cm2) of 551, 864, 980 1530 and 2700 nm transitions of Er 3+/M g 2+-codoped congruent and NS LNs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ e π , σ ( λ ) = 3 λ 5 A r a d I π , σ ( λ ) 8 π c [ n π 2 ( λ ) I π ( λ ) + 2 n σ 2 ( λ ) I σ ( λ ) ] λ d λ ,
σ a π , σ ( λ ) = σ e π , σ ( λ )exp( h ν ε T k T ),

Metrics