Abstract

A simple thin-film perfect absorber structure is shown that can achieve greater than 99.9% absorption and is tunable throughout the short-wave and mid-wave infrared. This is attained by use of the tunable mobility and carrier concentration, which in turn tunes the complex refractive indices, of a gallium-doped zinc oxide (GZO) thin film, and by choice of the GZO film thickness. The structure takes advantage of a metal substrate with large k, i.e. is opaque, with silver shown to be one suitable choice. The metal layer supporting GZO can be deposited on any practical substrate. An experimental deposited GZO film underwent subsequent etch steps and demonstrated 99% absorption at a wavelength of 2.1 μm. Finally, designs are shown that enable near perfect absorption in the range of 1.5-4.7 μm, with similar structures also likely possible extending beyond this wavelength range by further tailoring the GZO optical parameters and layer thickness. The presented structure, which is polarization insensitive at normal and near-normal incidence, has potential applications in reflection band filters, infrared scene generators, photodetectors and photovoltaics.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  2. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [Crossref] [PubMed]
  3. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
    [Crossref] [PubMed]
  4. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [Crossref] [PubMed]
  5. S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
    [Crossref] [PubMed]
  6. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
    [Crossref]
  7. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  8. J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
    [Crossref]
  9. D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunicatinos,” Appl. Phys. Lett. 102(18), 182107 (2013).
    [Crossref]
  10. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [Crossref]
  11. D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett. 101(10), 102101 (2012).
    [Crossref]
  12. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
    [Crossref]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).
  14. D. C. Look and K. D. Leedy, “Making highly conductive ZnO: creating donors and destroying acceptors,” Proc. SPIE 8263, 826302 (2012).
    [Crossref]
  15. M. Born and M. Wolf, Principles of Optics 7th expanded edition (Cambridge University, 2002).
  16. J. R. Hendrickson, S. Vangala, N. Nader, K. D. Leedy, J. Guo, and J. W. Cleary, Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, Ohio, 45433 are preparing a manuscript to be called “Plasmon resonance enabled perfect light absorption in gallium-doped zinc oxide subwavelength surface gratings”.
  17. BYU Department of Electrical & Computer Engineering, “Wet chemical etching of metals and semiconductors”, http://www.cleanroom.byu.edu/wet_etch.phtml , 2015.
  18. S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
    [Crossref]

2014 (3)

S. S. Mirshafieyan and J. Guo, “Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability,” Opt. Express 22(25), 31545–31554 (2014).
[Crossref] [PubMed]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

2013 (3)

2012 (5)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
[Crossref] [PubMed]

D. C. Look and K. D. Leedy, “Making highly conductive ZnO: creating donors and destroying acceptors,” Proc. SPIE 8263, 826302 (2012).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett. 101(10), 102101 (2012).
[Crossref]

2011 (2)

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

2005 (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Brener, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Buchwald, W.

Buchwald, W. R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Campione, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Chambers, S. A.

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett. 101(10), 102101 (2012).
[Crossref]

Chang, S. H.

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

Cheng, H.

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

Chuang, K.

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

Cleary, J. W.

J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
[Crossref] [PubMed]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Droubay, T. C.

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett. 101(10), 102101 (2012).
[Crossref]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Eyink, K.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Fan, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Guo, J.

Hendrickson, J.

Hendrickson, J. R.

Jacobs, T.

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Jun, Y. C.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Law, S.

Leedy, K. D.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunicatinos,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

D. C. Look and K. D. Leedy, “Making highly conductive ZnO: creating donors and destroying acceptors,” Proc. SPIE 8263, 826302 (2012).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, S.

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

Liu, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Look, D. C.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunicatinos,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett. 101(10), 102101 (2012).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

D. C. Look and K. D. Leedy, “Making highly conductive ZnO: creating donors and destroying acceptors,” Proc. SPIE 8263, 826302 (2012).
[Crossref]

Luk, T. S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Mirshafieyan, S. S.

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rooney, G.

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Sinclair, M. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Snure, M. R.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Soref, R.

Streyer, W.

Tien, C.

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

Tiwari, A.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Wasserman, D.

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Zhang, B.

Appl. Phys. Lett. (3)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunicatinos,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett. 101(10), 102101 (2012).
[Crossref]

J. Appl. Phys. (2)

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

S. H. Chang, H. Cheng, C. Tien, S. Lin, and K. Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers,” Opt. Mater. 38, 87–91 (2014).
[Crossref]

Phys. Rev. B (1)

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorber using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Proc. SPIE (2)

D. C. Look and K. D. Leedy, “Making highly conductive ZnO: creating donors and destroying acceptors,” Proc. SPIE 8263, 826302 (2012).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelenegth infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Other (4)

M. Born and M. Wolf, Principles of Optics 7th expanded edition (Cambridge University, 2002).

J. R. Hendrickson, S. Vangala, N. Nader, K. D. Leedy, J. Guo, and J. W. Cleary, Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, Ohio, 45433 are preparing a manuscript to be called “Plasmon resonance enabled perfect light absorption in gallium-doped zinc oxide subwavelength surface gratings”.

BYU Department of Electrical & Computer Engineering, “Wet chemical etching of metals and semiconductors”, http://www.cleanroom.byu.edu/wet_etch.phtml , 2015.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

ZnO on metal structure. Light is normally incident with multiple reflections in the cavity (GZO film) pictorially represented using spatial separation.

Fig. 2
Fig. 2

Wavelength dependent k for potential “metallic” substrates [13]

Fig. 3
Fig. 3

Absorption contours calculated for Ga-doped ZnO films on Ag and a silicon substrate. (left) and (right) are calculated for 1.5 and 3.5 μm respectively. The ZnO films increase in thickness trending downwards. “Forbidden” regions for Ga-doped ZnO are colored in grey. Black contour lines are included that illustrate the 90 and 95% absorption regions.

Fig. 4
Fig. 4

Wavelength-dependent absorption spectra for layered structures with optimized parameters for ~1.5 (left) and ~3.5 μm (right).

Fig. 5
Fig. 5

SEM images of the deposited film layer. (upper) shows the cross section while (lower) shows the sample held at a 45° angle to visualize the roughness.

Fig. 6
Fig. 6

Empirical absorption data compared with a calculation using measured permittivity values.

Fig. 7
Fig. 7

(upper) Experimental absorption measured as a function of etch time. (lower) Calculated absorption using measured permittivities for varying ZnO film thicknesses.

Tables (1)

Tables Icon

Table 1 Criteria for 99% absorption in the GZO/Ag layer structure for four target MIR wavelengths. The GZO thickness has 3 values for each wavelength while Ag is 50 nm thick. For the specific λ and thickness, the range of N and μ give the range of each that allows 99% absorption.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η 2 = ( n + i k ) 2 = ε [ 1 ω p 2 ω 2 + i ω ω τ ] ,
ω p = N e 2 m ε ε o ,
ω τ = e m μ .
μ min = ( m * N ε ε o ) ,
A = 1 ( T + R ) .

Metrics