Abstract

Here, we propose a hybrid approach to uniquely determine the elements of the circuit analogue of the terahertz metamaterial absorber that we previously reported. The proposed method is based on calculations, fitting, and physical mechanism of the absorption process interpreted by the model. In this work, the correlation between the model components and our designed absorber is comprehensively enlightened, and the dependence of the model elements to structural dimensions of the absorber is analyzed both qualitatively and quantitatively. By applying this approach on frequency selective surface (FSS) model, we are also able to interpret the polarization insensitivity of our designed absorber. The proposed model and approach is applicable for all metamaterial absorbers with any arbitrary FSS design.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model

Mohammad Parvinnezhad Hokmabadi, David S. Wilbert, Patrick Kung, and Seongsin M. Kim
Opt. Express 21(14) 16455-16465 (2013)

Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum

Dengmu Cheng, Jianliang Xie, Huibing Zhang, Chundong Wang, Nan Zhang, and Longjiang Deng
J. Opt. Soc. Am. B 29(6) 1503-1510 (2012)

Broadband metamaterial absorber based on coupling resistive frequency selective surface

LiangKui Sun, HaiFeng Cheng, YongJiang Zhou, and Jun Wang
Opt. Express 20(4) 4675-4680 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  3. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  4. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  5. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
    [Crossref] [PubMed]
  6. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
    [Crossref] [PubMed]
  7. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  8. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  9. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  10. V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
    [Crossref] [PubMed]
  11. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  12. H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, X. Zhang, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
    [Crossref] [PubMed]
  13. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  14. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  15. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  16. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  17. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
    [Crossref]
  18. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref] [PubMed]
  19. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
    [Crossref] [PubMed]
  20. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  21. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
    [Crossref]
  22. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  23. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  24. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B 75(20), 205102 (2007).
    [Crossref]
  25. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  26. M. D’Amore, V. De Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn. 48(2), 703–706 (2012).
    [Crossref]
  27. X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, “Equivalent circuit analysis of terahertz metamaterial filters,” Chin. Opt. Lett. 9(11), 110012 (2011).
    [Crossref]
  28. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).
  29. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
    [Crossref]
  30. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
    [Crossref]
  31. J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
    [Crossref]
  32. F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
    [Crossref]
  33. Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
    [Crossref]
  34. T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett. 11, 480–483 (2012).
    [Crossref]
  35. Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
    [Crossref]
  36. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
    [Crossref]
  37. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
    [Crossref] [PubMed]
  38. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
    [Crossref] [PubMed]
  39. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  40. D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
    [Crossref]
  41. K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
    [Crossref]
  42. H. M. Greenhous, “Design of planar rectangular microeletronic inductors,” IEEE Trans. Parts, Hybrids, Packag. PHP 10(2), 101–109 (1974).
  43. C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron. Dev. 47(3), 560–568 (2000).
    [Crossref]
  44. H. Johnson and M. Graham, High Speed Digital Design (Prentice Hall, 1993).
  45. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  46. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]

2013 (9)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

2012 (9)

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
[Crossref]

T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett. 11, 480–483 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

M. D’Amore, V. De Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn. 48(2), 703–706 (2012).
[Crossref]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (3)

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

2007 (3)

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B 75(20), 205102 (2007).
[Crossref]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2006 (2)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

2000 (1)

C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron. Dev. 47(3), 560–568 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1974 (1)

H. M. Greenhous, “Design of planar rectangular microeletronic inductors,” IEEE Trans. Parts, Hybrids, Packag. PHP 10(2), 101–109 (1974).

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Alici, K. B.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Azad, A. K.

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[Crossref]

Baena, J. D.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Bilotti, F.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Bingham, C. M.

Bonache, J.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Brady, D.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

Cao, W.

Chen, H. T.

Chen, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Chen, Q.

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Cheng, Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Chowdhury, D. R.

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Cui, T. J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Cumming, D. R.

D’Amore, M.

M. D’Amore, V. De Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn. 48(2), 703–706 (2012).
[Crossref]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

De Santis, V.

M. D’Amore, V. De Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn. 48(2), 703–706 (2012).
[Crossref]

Dickson, W.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Dimitriadis, A. I.

T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett. 11, 480–483 (2012).
[Crossref]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

Dressel, M.

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Driscoll, T.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Falcone, F.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Fan, K.

Feliziani, M.

M. D’Amore, V. De Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn. 48(2), 703–706 (2012).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

Garcia, J. G.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B 75(20), 205102 (2007).
[Crossref]

Gil, I.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grant, J.

Greenhous, H. M.

H. M. Greenhous, “Design of planar rectangular microeletronic inductors,” IEEE Trans. Parts, Hybrids, Packag. PHP 10(2), 101–109 (1974).

Gu, J.

Han, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hokmabadi, M. P.

D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Huang, L.

Hunt, J.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Jiang, W. X.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Kadlec, E. A.

Kantartzis, N. V.

T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett. 11, 480–483 (2012).
[Crossref]

Karamanos, T. D.

T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett. 11, 480–483 (2012).
[Crossref]

Khalid, A.

Kim, S. M.

D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kitano, M.

Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
[Crossref]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Kung, P.

D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

Lai, S.

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Landy, N. I.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Laso, M. A. G.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, H.

Li, Q.

Li, Y. X.

Linden, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Lipworth, G.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Liu, Y. L.

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Lopetegi, T.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Luo, S. N.

Ma, H. F.

Ma, Y.

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Marqués, R.

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

Martín, F.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

McPhillips, J.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Medina, F.

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

Mesa, F.

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Meyrath, T. P.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B 75(20), 205102 (2007).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Murphy, A.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Nakanishi, T.

Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
[Crossref]

Nakata, Y.

Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
[Crossref]

O’Hara, J. F.

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[Crossref]

Okada, T.

Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
[Crossref]

Ozbay, E.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, X. Zhang, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pang, Y. Q.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Peng, X. Y.

Podolskiy, V. A.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Pollard, R. J.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Portilo, M. F.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Qi, M. Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Ramani, S.

Reiten, M. T.

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Scheffler, M.

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shaner, E. A.

Shen, X.

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Sillero, R. M.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Smirnova, E.

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[Crossref]

Smith, D. R.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Sorolla, M.

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Soukoulis, C. M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Steinberg, K.

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Strikwerda, A. C.

Tao, H.

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Teng, J. H.

Tian, Z.

Toscano, A.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Vegni, L.

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Wang, B.

Wang, J.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wegener, M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Q. Y.

Wilbert, D. S.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
[Crossref]

Wong, S. S.

C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron. Dev. 47(3), 560–568 (2000).
[Crossref]

Xie, Y. S.

Yakovlev, V. V.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Yang, Q. H.

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yue, C. P.

C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron. Dev. 47(3), 560–568 (2000).
[Crossref]

Yue, W.

Zayats, A. V.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Zentgraf, T.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B 75(20), 205102 (2007).
[Crossref]

Zhang, D. H.

Zhang, H. W.

Zhang, W.

Zhang, X.

Zhao, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, Y. J.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Adv. Mater. (2)

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Appl. Phys. Lett. (1)

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Antennas Wirel. Propag. Lett. (1)

T. D. Karamanos, A. I. Dimitriadis, and N. V. Kantartzis, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett. 11, 480–483 (2012).
[Crossref]

IEEE J. Sel. Top. IEEE Journal of (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. IEEE Journal of 12(6), 1097–1105 (2006).

IEEE Trans. Antenn. Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (1)

C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron. Dev. 47(3), 560–568 (2000).
[Crossref]

IEEE Trans. Magn. (1)

M. D’Amore, V. De Santis, and M. Feliziani, “Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films,” IEEE Trans. Magn. 48(2), 703–706 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (4)

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions,” IEEE Trans. Microw. Theory Tech. 55(12), 2865–2873 (2007).
[Crossref]

J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

IEEE Trans. Parts, Hybrids, Packag. PHP (1)

H. M. Greenhous, “Design of planar rectangular microeletronic inductors,” IEEE Trans. Parts, Hybrids, Packag. PHP 10(2), 101–109 (1974).

IEEE Trans. Terahertz Sci. Technol. (1)

D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, “Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers,” IEEE Trans. Terahertz Sci. Technol. 3(6), 846–850 (2013).
[Crossref]

J. Appl. Phys. (2)

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 023704 (2011).
[Crossref]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(517), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (3)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. B (1)

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B 75(20), 205102 (2007).
[Crossref]

Phys. Rev. Lett. (3)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, “Circuit model for hybridization modes in metamaterials and its analogy to the quantum tight‐binding model,” Phys. Status Solidi B 249(11), 2293–2302 (2012).
[Crossref]

Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Science (3)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Other (1)

H. Johnson and M. Graham, High Speed Digital Design (Prentice Hall, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Three dimensional schematic and (b) Front view illustration of the designed absorber composed of FSS, polyimide and metal backplane. The purple areas are Cu and the green areas are polyimide.

Fig. 2
Fig. 2

(a) Electric field and current density on FSS and backplane of absorber at 0.476 THz with 0° incident polarization. White and black arrows on FSS and backplane have added to indicate to currents for clarity. (b) Schematic illustration of absorption process based on interference theory. (c) Electric model of the metamaterial absorbers for the perfect absorption case (100%). (d) Realistic model of metamaterial absorbers by considering the effect of dielectric spacer to achieve perfect (≈100%) or imperfect absorption (<100%).

Fig. 3
Fig. 3

Electric field and current density profiles on FSS, backplane and the corresponding electric model for 0° (a, b, c, and d), 20° (e, f, g, and h), and 45° (I, j, k, and l) incident polarizations. Black arrows indicate to current directions on FSS and backplane added for clarity. Red Closed curves are added to indicate to the effective dipoles created on FSS.

Fig. 4
Fig. 4

Schematic illustration of mutual capacitance between FSS and backplane for (a) 0° (b) 20°, and (c) 45° incident polarization. Ci, i = 1, 2, and 3 are the capacitances between the metal bars and backplane as microstrip waveguides and CP is the total equivalent capacitance between FSS and backplane, (d) side view illustration of a microstrip waveguide composed of a metal bar, backplane, and polyimide between them.

Fig. 5
Fig. 5

(a) Schematic illustration of the absorber under 0° polarization with corresponding currents on FSS (blue arrows called IFSS) and backplane (green arrows called IIn). The created and induced dipoles are displayed by using red closed lines. (b). Schematic representation of mutual inductance created between FSS and backplane. LP originates from the surfaces S (enclosed with dotted lines) where the incident magnetic field is perpendicular to those.

Fig. 6
Fig. 6

Flowchart representing the hybrid approach for determining the model elements.

Fig. 7
Fig. 7

(a) Simulated data of absorber with 14 μm (black dots) and 11 μm (red dots) polyimide thicknesses and their corresponding model responses with black and red solid graphs, respectively (b) Simulated data of absorber with 14 μm (black dots) and 17 μm (blue dots) polyimide thicknesses and their corresponding model responses with black and blue solid graphs, respectively.

Fig. 8
Fig. 8

Front view illustration of magnetic field vectors inside polyimide at resonance frequency for the perfect absorber with polyimide thickness of 14 μm when the incident polarization is 0° (a) and 45° (b). Blue lines labeled S indicate to the areas that exhibit magnetic response and connected dots labeled LP shows the possible mutual surfaces that can couple to each other.

Tables (4)

Tables Icon

Table 1 Dimensions of the Designed Metamaterial Absorber

Tables Icon

Table 2 Equivalent Inductance and Capacitance of FSS

Tables Icon

Table 3 Evaluated Parameters of the Absorbers by Using the Hybrid Method at 0° Polarization

Tables Icon

Table 4 Evaluated Parameters of Perfect Absorber by Using the Hybrid Approach of the Realistic Model at Three Different Polarizations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L(nH)=0.2l(mm)[ln( 2l w+t )+0.5+ (w+t) 3l ]
| V O V i | 2 = (RCω) 2 (1LC ω 2 ) 2 + (RCω) 2
C(pF)= 0.67×( ε r +1.41) ln(5.98×H)/(0.8×W+T)
| V O V i |2= R 2 [ ( R p C p C ω 2 ) 2 + (Cω L p C p C ω 3 ) 2 ] [1+LC L p C p ω 4 (LC+ L p C p +R R p C C p ) ω 2 ] 2 + ... ... [ R p C+RC+ R p C p )ω( R p C p LC+ R p L p C p C+R L p C p C) ω 3 ] 2

Metrics