Abstract

Chalcogenide glass fibers have attractive properties (e.g. wide transparent window, high optical non-linearity) and numerous potential applications in the mid-infrared (MIR) region. Low optical loss is desired and important in the development of these fibers. Ge-As-Se glass has a large glass-forming range to provide versatility of choice from continuously varying physical properties. Recently, broadband MIR supercontinuum generation has been achieved in chalcogenide fibers by using Ge-As-Se glass in the core/clad. structure. In the shaping of chalcogenide glass optical fiber preforms, extrusion is a useful technique. This work reports glass properties (viscosity-temperature curve and glass transition) and optical losses of Ge-As-Se fiber fabricated from an extruded preform. A robust cut-back method of fiber loss measurement is developed and the corresponding error calculation discussed. MIR light is propagated through 52 meters of a fiber, which has the lowest loss yet reported for Ge-As-Se fiber of 83 ± 2 dB/km at 6.60 μm wavelength. The fiber baseline loss is 83-90 dB/km across 5.6-6.8 μm, a Se-H impurity absorption band of 1.4 dB/m at 4.5 μm wavelength is superposed and other impurity bands (e.g. O-H, As-O, Ge-O) are ≤ 20 dB/km. Optical losses of fiber fabricated from different positions of the extruded preform are investigated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses

Perrine Toupin, Laurent Brilland, Johann Trolès, and Jean-Luc Adam
Opt. Mater. Express 2(10) 1359-1366 (2012)

Fabrication of extruded fluoroindate optical fibers

Jiafang Bei, Tanya M. Monro, Alexander Hemming, and Heike Ebendorff-Heidepriem
Opt. Mater. Express 3(3) 318-328 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications introduction,” Opt. Express 18(25), 26632–26634 (2010).
    [Crossref] [PubMed]
  2. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  4. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  5. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  6. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257(0), 6–16 (1999).
    [Crossref]
  7. M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
    [Crossref]
  8. V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
    [Crossref]
  9. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
    [Crossref]
  10. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(0), 44–50 (1995).
    [Crossref]
  11. Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
    [Crossref]
  12. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  13. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  14. T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
    [Crossref]
  15. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).
  16. H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
    [Crossref]
  17. J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
    [Crossref]
  18. V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
    [Crossref]
  19. E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).
  20. J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213–214(0), 63–67 (1997).
    [Crossref]
  21. G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).
  22. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
    [Crossref] [PubMed]
  23. M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
    [Crossref]
  24. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
    [Crossref]
  25. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).
  26. P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2(10), 1359–1366 (2012).
    [Crossref]
  27. Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
    [Crossref]
  28. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref] [PubMed]
  29. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
  30. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref] [PubMed]
  31. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
    [Crossref]
  32. I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).
  33. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
    [Crossref]
  34. D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
    [Crossref]
  35. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
    [Crossref]
  36. D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
    [Crossref]
  37. K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
    [Crossref]
  38. G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
    [Crossref]
  39. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
    [Crossref] [PubMed]
  40. Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
    [Crossref]
  41. A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
    [Crossref]
  42. V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).
  43. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
    [Crossref]
  44. M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
    [Crossref]
  45. Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
    [Crossref]
  46. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
    [Crossref]
  47. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
    [Crossref]
  48. M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [Crossref]
  49. M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
    [Crossref]
  50. Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
    [Crossref]

2015 (3)

2014 (5)

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

2013 (1)

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

2012 (3)

2011 (3)

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

2010 (2)

2009 (5)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

2008 (3)

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[Crossref] [PubMed]

2007 (1)

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

2005 (1)

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

2004 (2)

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

2003 (1)

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

2002 (2)

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

2001 (2)

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

1999 (3)

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257(0), 6–16 (1999).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
[Crossref]

1997 (1)

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213–214(0), 63–67 (1997).
[Crossref]

1995 (3)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(0), 44–50 (1995).
[Crossref]

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

1994 (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

1992 (1)

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

1991 (1)

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

1984 (2)

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

1982 (1)

E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).

1974 (1)

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

1972 (1)

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
[Crossref]

1960 (1)

A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abouraddy, A. F.

Adam, J. L.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Adam, J.-L.

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257(0), 6–16 (1999).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213–214(0), 63–67 (1997).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Agger, C. S.

Banaei, E.-H.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Barney, E.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

Bhowmick, K.

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

Boussard-Plédel, C.

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Brilland, L.

P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2(10), 1359–1366 (2012).
[Crossref]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[Crossref] [PubMed]

Charpentier, F.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

Cheng, Y.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Choi, D.-Y.

Churbanov, M.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

Clare, A. G.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

Coulombier, Q.

Dai, S.

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
[Crossref]

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Desevedavy, F.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Désévédavy, F.

Devyatykh, G. G.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

Dianov, E.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

Dianov, E. M.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duverger-Arfuso, C.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications introduction,” Opt. Express 18(25), 26632–26634 (2010).
[Crossref] [PubMed]

Elliott, S.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

Fadin, I. E.

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

Farries, M.

Fay, M.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Fuhrberg, P.

Furniss, D.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
[Crossref]

Gai, X.

Gent, A. N.

A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
[Crossref]

Gerasimenko, V. V.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

Gibson, D. J.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

Guo, W.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Harrington, J. A.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

He, Y.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Houizot, P.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[Crossref] [PubMed]

Howard, R.

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Ishida, K.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Katsuyama, T.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Kaufman, J. J.

King, W. A.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

Koltashev, V. V.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Kubat, I.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kung, F. H.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Lacourse, W. C.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

Lamrini, S.

Li, L.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Li, Q.

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

Lian, Z.

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

Lucas, J.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Luther-Davies, B.

Macedo, P.

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Madden, S.

Maklad, M.

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Matsumura, H.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Miklos, R.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Mohr, R.

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Moizan, V.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Morvan, H. P.

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

Moselund, P. M.

Moynihan, C.

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Napier, B.

Nazabal, V.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Neate, N.

Neate, N. C.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

Nguyen, V. Q.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Nie, Q.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Niu, Y.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Pain, T.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petrov, M. Y.

E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).

Plotnichenko, V.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

Plotnichenko, V. G. e.

E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).

Pureza, P.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Pushkin, A. A.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

Pyrkov, Y. N.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

Qi, S.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Reitter, A. M.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Renversez, G.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Roeder, E.

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
[Crossref]

Sakr, H.

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257(0), 6–16 (1999).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213–214(0), 63–67 (1997).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Satoh, S.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Scholle, K.

Scripachev, I. V.

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(0), 44–50 (1995).
[Crossref]

Shabahang, S.

Shaposhnikov, R. M.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Shiryaev, V.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

Skripachev, I. V.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

Smektala, F.

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[Crossref] [PubMed]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Snopatin, G.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

Sojka, L.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Sójka, L.

Sreeram, A. N.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Suchkov, A. I.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

Sujecki, S.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Swiler, D. R.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Sysoev, V. K.

E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Tang, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Tang, Z.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Tao, G.

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Toupin, P.

Traynor, N.

Troles, J.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[Crossref] [PubMed]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Trolès, J.

Varshneya, A. K.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Wang, R.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Wang, X.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Ward, J.

Weston, N.

Xu, H.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Xu, T.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Yang, A.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Yang, Z.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Zakery, A.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

Zhai, C.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Zhang, B.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Zhang, P.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Zhang, X.

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Zhang, X. H.

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Br. J. Appl. Phys. (1)

A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
[Crossref]

High-Purity Substances (1)

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Skripachev, and M. F. Churbanov, “Fiber waveguides based on high-purity chalcogenide glasses,” High-Purity Substances 5(1), 1–27 (1991).

IEEE J. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Infrared Phys. Technol. (1)

H. Xu, Y. He, X. Wang, Q. Nie, P. Zhang, T. Xu, S. Dai, X. Zhang, and G. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65(0), 77–82 (2014).
[Crossref]

Inorg. Mater. (3)

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Y. N. Pyrkov, J. Lucas, and J. L. Adam, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

J. Am. Ceram. Soc. (5)

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of arsenic selenide optical fiber with low hydrogen impurities,” J. Am. Ceram. Soc. 85(11), 2849–2851 (2002).
[Crossref]

K. Bhowmick, H. P. Morvan, D. Furniss, A. B. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc. 96(1), 118–124 (2013).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-Infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).

J. Appl. Phys. (1)

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

J. Lightwave Technol. (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

J. Non-Cryst. Solids (14)

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213–214(0), 63–67 (1997).
[Crossref]

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(0), 44–50 (1995).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257(0), 6–16 (1999).
[Crossref]

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11), 2352–2357 (2011).
[Crossref]

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As–S glass fibres,” J. Non-Cryst. Solids 256–257(0), 318–322 (1999).
[Crossref]

J. Optoelectron. Adv. Mater. (3)

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 341–349 (2001).

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam, and J. Lucas, “Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content,” J. Optoelectron. Adv. Mater. 7(4), 1773–1779 (2005).

I. V. Scripachev, M. F. Churbanov, V. V. Gerasimenko, G. E. Snopatin, V. S. Shiryaev, A. A. Pushkin, I. E. Fadin, V. G. Plotnichenko, and Y. N. Pyrkov, “Optical and mechanical characteristics of fibers made of arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3(2), 351–360 (2001).

Lightwave Technology, Journalism (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” Lightwave Technology, Journalism 12(5), 737–741 (1994).

Mater. Res. Bull. (1)

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[Crossref]

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32(1), 212–215 (2009).
[Crossref]

Opt. Mater. Express (3)

Optoelectron Adv. Mat. (1)

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron Adv. Mat. 3(7), 669–671 (2009).

Photonics Technology Letters, IEEE (1)

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” Photonics Technology Letters, IEEE 21(24), 1804–1806 (2009).
[Crossref]

Quantum Electron. (1)

E. M. Dianov, M. Y. Petrov, V. G. e. Plotnichenko, and V. K. Sysoev, “Estimate of the minimum optical losses in chalcogenide glasses,” Quantum Electron. 12(4), 498–499 (1982).

Solid State Commun. (1)

M. Maklad, R. Mohr, R. Howard, P. Macedo, and C. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

As-annealed Ge10As21Se69 (at%) boule glass (diameter = 28.5 mm) and the extruded 9 mm diameter unclad. preform. The preform was drawn into fibers (i.e. code: No.I, No.II(A), No.II (B) and No.II (C)) and the corresponding positions of the preform are shown. The fiber loss spectra are presented in Fig. 8 and Fig. 9.

Fig. 2
Fig. 2

Sketch of the developed fiber loss measurements applied in this work shown here for the Ge10As21Se69 (at%) fiber, comprising the No.I fiber and the No.II fibers (consisting of the No.II(A), the No.II(B) and the No.II(C) fibers). As depicted in the figure part (a), there were: 52 meters of the No.I fiber and two groups of cleaves for the No.I fiber, namely: group one (1a, 1b, 1c) and group two (2a, 2b, 2c) cleaves in the loss measurement of the No.I fiber. Similarly, as depicted in the figure part (b), there were 50 meters in total of the No.II fibers (comprising the No.II(A), the No.II(B) and the No.II(C) fibers) and four groups of cleaves (namely: group one (1a, 1b, 1c), group two (2a, 2b, 2c), group three (3a, 3b, 3c) and group four (4a, 4b, 4c)) in the loss measurements for the No.II fibers (comprising the No.II(A), the No.II(B) and the No.II(C) fibers). P is optical power spectrum.

Fig. 3
Fig. 3

Optical micrographs of the cleaves applied in the loss measurement of the No.I fiber of Ge10As21Se69 (at%) glass. The optical loss spectrum of the No.I fiber in Fig. 8 was calculated using the two best cleaves in group one (i.e. 1c) and group two (i.e. 2b). The measured loss error/standard deviation of the optical loss spectrum of the No.I fiber was achieved based on cross-calculation of cleaves between group one, and group two, cleaves and is given in Table 2.

Fig. 4
Fig. 4

Optical micrographs of the best cleaves achieved in each of the four groups of optical loss measurement of the No.II fibers of Ge10As21Se69 viz.: No.II(A), No.II(B) and No.II(C). Optical loss spectra of the No.II (A), the No.II (B) and the No.II (C) fibers presented in Fig. 9 are based on the calculation of the best cleaves between each of the adjacent groups one&two, two&three and three&four, respectively.

Fig. 5
Fig. 5

Viscosity-temperature curves of the Ge10As21Se69 supercooled glass melt collected at 10°C/min. Solid curves are for the 4.1 mm thick glass samples that could achieve comparatively high viscosity (108.0 Pa.s); dotted curves are for the 1.6 mm thin glass samples that could achieve comparatively low viscosity (104.5 Pa.s). In this way the full viscosity/temperature range of interest could be covered.

Fig. 6
Fig. 6

Viscosity-temperature curves of the Ge10As21Se69 supercooled glass melt using isochronal heating rates of: (a) 2.5°C/min, (b) 5°C/min and (c) 10°C/min, from the lower black curve to the upper blue curve, respectively. The blue viscosity-temperature curve (a), here in Fig. 6, was the same sample and is the same viscosity-temperature curve as curve (a) in Fig. 5.

Fig. 7
Fig. 7

DSC curves of the as-annealed Ge10As21Se69 glass (heating rate: 10°C/min). From top to bottom, Tgs are shown for the glass sample that passed through Tg once, twice and thrice. Note that the upper DSC curve shows a different Tg because the thermal history of the glass sample was different, whereas the two lower DSC curves show the same Tg and the sample in both cases had the same thermal history. The extrusion temperature as labelled on the DSC curve is the actual one used in the extrusion experiment. The tiny blips in the DSC curves arose from adventitious mechanical vibration during the measurement.

Fig. 8
Fig. 8

Optical loss spectrum of the unclad. Ge10As21Se69 No.I fiber. Inset shows more clearly the sub-100 dB/km loss characteristic. The corresponding position of the preform used in fabricating the No.I fiber can be found in Fig. 1. Optical micrographs of the two best fiber cleaves used in the loss calculation of the unclad. Ge10As21Se69 No.I fiber are in Fig. 3.

Fig. 9
Fig. 9

Optical loss comparison of the spectra of the No.I, No.II(A), No.II(B) and No.II(C) fibers (unclad. fiber of nominal composition Ge10As21Se69 (at%)). For convenience, the dotted line is the vertically shifted spectrum of the No.II(A) fiber for comparison of its extra absorption and scattering loss. The preform position from which each fiber originated is given in Fig. 1. Optical micrographs of the best fiber cleaves used in the calculation of the spectral loss here are presented in Fig. 3 and Fig. 4.

Tables (2)

Tables Icon

Table 1 Typical ultra-low loss data for chalcogenide glass fiber based on different elemental systems.

Tables Icon

Table 2 Error/standard deviation calculation on the loss measurement of the No.I fiber. 2.7092 μm wavelength and 3.8500 μm wavelengths were chosen because the fiber spectrum exhibited low loss and was smoothly varying at both these wavelengths and probably was affected only by extrinsic and intrinsic scattering, rather than absorption. In the Table, as an example, for convenience, '1a-2a' is the notation taken for the calculation of loss between cleave 1a and cleave 2a. Cleave quality for the No.I fiber is in Fig. 3. The optical loss spectrum of the No.I fiber may be found in Fig. 8 and was calculated using the two best cleaves: 1c and 2b.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Loss(dB/m)=(10/L) log 10 ( P out / P in )

Metrics