Abstract

A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 µm) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses

Naoki Kubo, Naoki Ikutame, Masashi Takei, Bian Weibai, Sadatatsu Ikeda, Kiyoshi Yamamoto, Keiichiro Uraji, Takahiro Misawa, Masaya Fujioka, Hideo Kaiju, Gaoyang Zhao, and Junji Nishii
Opt. Mater. Express 7(5) 1438-1445 (2017)

Planar waveguides in multicomponent glasses fabricated by field-driven differential drift of cations

A. L. R. Brennand and J. S. Wilkinson
Opt. Lett. 27(11) 906-908 (2002)

Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses

Igor Reduto, Aleksandr Kamenskii, Pavel Brunkov, Valentina Zhurikhina, Yuri Svirko, and Andrey Lipovskii
Opt. Mater. Express 9(7) 3059-3068 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  2. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18(9), 693–695 (1993).
    [Crossref] [PubMed]
  3. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001).
    [Crossref]
  4. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
    [Crossref]
  5. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
    [Crossref]
  6. N. Godbout and S. Lacroix, “Characterisation of thermal poling in silica glasses by current measurements,” J. Non-Crst, Solids 316(2–3), 338–348 (2003).
  7. M. Qui, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, “Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling,” J. Opt. Soc. Am. B 19(1), 37–42 (2002).
    [Crossref]
  8. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
    [Crossref]
  9. A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
    [Crossref]
  10. W. Margulis and F. Laurell, “Fabrication of waveguides by a poling procedure,” Appl. Phys. Lett. 71(17), 2418–2420 (1997).
    [Crossref]
  11. A. L. R. Brennand and J. S. Wilkinson, “Planar waveguides in multicomponent glasses fabricated by field-driven differential drift of cations,” Opt. Lett. 27(11), 906–908 (2002).
    [Crossref] [PubMed]
  12. O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
    [Crossref]
  13. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
    [Crossref]
  14. A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
    [Crossref] [PubMed]
  15. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
    [Crossref]
  16. L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express 20(20), 22579–22584 (2012).
    [Crossref] [PubMed]
  17. V. V. Rusan and D. K. Tagantsev, “A new method for recording images in glasses,” Glass Phys. Chem. 35(2), 225–227 (2009).
    [Crossref]
  18. A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17–18), 849–855 (2010).
    [Crossref]
  19. Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
    [Crossref]
  20. V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
    [Crossref]
  21. R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87(23), 232904 (2005).
    [Crossref]
  22. K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
    [Crossref]

2012 (2)

2011 (1)

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

2010 (3)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17–18), 849–855 (2010).
[Crossref]

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
[Crossref]

2009 (1)

V. V. Rusan and D. K. Tagantsev, “A new method for recording images in glasses,” Glass Phys. Chem. 35(2), 225–227 (2009).
[Crossref]

2008 (1)

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

2005 (2)

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87(23), 232904 (2005).
[Crossref]

2004 (2)

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

2003 (1)

N. Godbout and S. Lacroix, “Characterisation of thermal poling in silica glasses by current measurements,” J. Non-Crst, Solids 316(2–3), 338–348 (2003).

2002 (2)

2001 (1)

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001).
[Crossref]

2000 (2)

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

1998 (1)

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

1997 (1)

W. Margulis and F. Laurell, “Fabrication of waveguides by a poling procedure,” Appl. Phys. Lett. 71(17), 2418–2420 (1997).
[Crossref]

1993 (1)

1991 (1)

Abdolvand, A.

L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express 20(20), 22579–22584 (2012).
[Crossref] [PubMed]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

Balestrieri, V.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

Bashar, A.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Brennand, A. L. R.

Brueck, S. R. J.

Cardinal, T.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Carvalho, I. C. S.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

Cordeiro, C. M. B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

Deparis, O.

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

Doremus, R. H.

R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87(23), 232904 (2005).
[Crossref]

Dussauze, M.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Enami, Y.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Faccio, D.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001).
[Crossref]

Fargin, E.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Fleming, L. A. H.

Garcia, F. C.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

Gillespie, W. A.

Godbout, N.

N. Godbout and S. Lacroix, “Characterisation of thermal poling in silica glasses by current measurements,” J. Non-Crst, Solids 316(2–3), 338–348 (2003).

Gösele, U.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

Graener, H.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

Hering, E.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

Honkanen, S.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Hourd, A. C.

Jen, A. K.-Y.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Kamal, A.

Kamitsos, E. I.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Karvinen, P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Kazansky, P. G.

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001).
[Crossref]

P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18(9), 693–695 (1993).
[Crossref] [PubMed]

Kippelen, B.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Kuittinen, M.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Lacroix, S.

N. Godbout and S. Lacroix, “Characterisation of thermal poling in silica glasses by current measurements,” J. Non-Crst, Solids 316(2–3), 338–348 (2003).

Laurell, F.

W. Margulis and F. Laurell, “Fabrication of waveguides by a poling procedure,” Appl. Phys. Lett. 71(17), 2418–2420 (1997).
[Crossref]

Leinonen, K.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Lesche, B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

Lipovskii, A.

K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Lipovskii, A. A.

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17–18), 849–855 (2010).
[Crossref]

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
[Crossref]

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Madasamy, P.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Marder, S. R.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Margulis, W.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

W. Margulis and F. Laurell, “Fabrication of waveguides by a poling procedure,” Appl. Phys. Lett. 71(17), 2418–2420 (1997).
[Crossref]

Mathine, D. L.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Matthias, S.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

Melehin, V.

K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

Melehin, V. G.

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Mizunami, T.

Mukherjee, N.

Myers, R. A.

Orriols, G.

Paivasaari, K.

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
[Crossref]

Payghambarian, N.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Petrov, M.

K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Petrov, M. I.

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

Pi, F.

Podlipensky, A.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

Poyhonen, P.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Pruneri, V.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001).
[Crossref]

Qui, M.

Richardson, K.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Rodriguez, V.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Rusan, V. V.

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17–18), 849–855 (2010).
[Crossref]

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
[Crossref]

V. V. Rusan and D. K. Tagantsev, “A new method for recording images in glasses,” Glass Phys. Chem. 35(2), 225–227 (2009).
[Crossref]

Russell, P. St. J.

Seifert, G.

L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express 20(20), 22579–22584 (2012).
[Crossref] [PubMed]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

Smith, C.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Sokolv, K.

K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

Svirko, Y. P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Svirko, Yu. P.

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

Syrowatka, F.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

Tagantsev, D. K.

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
[Crossref]

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17–18), 849–855 (2010).
[Crossref]

V. V. Rusan and D. K. Tagantsev, “A new method for recording images in glasses,” Glass Phys. Chem. 35(2), 225–227 (2009).
[Crossref]

Triques, A. L. C.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

Vilaseca, R.

Wackerow, S.

Wilkinson, J. S.

Wu, J.

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

Zhurikhina, V.

K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

Zhurikhina, V. V.

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. 17(24), 2983–2987 (2005).
[Crossref]

Appl. Phys. Lett. (7)

Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Payghambarian, S. R. Marder, A. K.-Y. Jen, and J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086 (2000).
[Crossref]

R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87(23), 232904 (2005).
[Crossref]

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001).
[Crossref]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72(25), 3252–3254 (1998).
[Crossref]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76(18), 2496–2498 (2000).
[Crossref]

W. Margulis and F. Laurell, “Fabrication of waveguides by a poling procedure,” Appl. Phys. Lett. 71(17), 2418–2420 (1997).
[Crossref]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[Crossref]

Glass Phys. Chem. (2)

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskii, and K. Paivasaari, “A new method for recording phase optical structures in glasses,” Glass Phys. Chem. 36(4), 513–516 (2010).
[Crossref]

V. V. Rusan and D. K. Tagantsev, “A new method for recording images in glasses,” Glass Phys. Chem. 35(2), 225–227 (2009).
[Crossref]

J. Appl. Phys. (2)

K. Sokolv, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “Spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, Yu. P. Svirko, and V. V. Zhurikhina, “Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites,” J. Appl. Phys. 109(1), 011101 (2011).
[Crossref]

J. Non-Crst, Solids (1)

N. Godbout and S. Lacroix, “Characterisation of thermal poling in silica glasses by current measurements,” J. Non-Crst, Solids 316(2–3), 338–348 (2003).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[Crossref]

J. Phys. Chem. C (1)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Nanotechnology (1)

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Solid State Ion. (1)

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17–18), 849–855 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The microscope images are taken of the sample surfaces post poling (ii - v). The image in (i) shows surface of the structured electrode for comparison. The maximum applied poling electric potentials were (ii) 1.0 kV (in 0.2 kV steps), (iii) 0.8 kV (0.2 kV steps), (iv) 0.6 kV (0.2 kV steps), and (v) 0.3 kV (0.1 kV steps).
Fig. 2
Fig. 2 Distributions of key elements (sodium, potassium and silicon) as a function of depth measured by local X-ray element analysis of vertical cross section samples (a) before and (b) after poling at a maximum electric potential of 0.3 kV (0.1 kV steps). The red line indicates the surface of the glass.
Fig. 3
Fig. 3 Comparison of the conductivity of unaltered soda-lime glass (“Unaltered”), a sample post poling using grid structured electrode (“Grid Structured”), and a sample post poling using a plain electrode (“Plain Poled”). Both poled samples were fabricated under the same conditions (oven temperature was 553 K with a maximum voltage of 0.3 kV, using a step increase of 0.1 kV). The solid lines represent the best fit of Eq. (2) to the data points (using the calculated ΔE values given in the key).
Fig. 4
Fig. 4 Current-time dynamics recorded during thermal poling. Maximum voltage; (i) 1.0 kV (0.2 kV steps), (ii) 0.8 kV (0.2 kV steps), (iii) 0.6 kV (0.2 kV steps), and (iv) 0.3 kV (0.1 kV steps). The peaks in the current coincide with the increase stepped in voltage.
Fig. 5
Fig. 5 (a) Diffraction pattern (in transmission) of the samples structured at a maximum voltage of (i) 1.0 kV (0.2 kV steps), (ii) 0.8 kV (0.2 kV steps), (iii) 0.6 kV (0.2kV steps), and (iv) 0.3 kV (0.1 kV steps) upon illumination by a 632 nm He-Ne laser. The intensity of the zero order has been reduced by a small piece of black felt in order to take these images. (b) Log plot displaying the values of diffraction efficiency (η) for the visible orders (zero, first and second) of the diffraction patterns shown in Fig. 5(a).
Fig. 6
Fig. 6 Diffraction pattern from a sample which was poled twice using different angles for the grid structuring; the effect is a star-like unlike the grid-like pattern shown in Fig. 5(a) .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ= κ R ( s ld ).
σ= σ 0 exp[ ΔE k B T ].

Metrics