Abstract

We use a modified Teng-Man technique to investigate the poling induced electro-optic activity of chromophore-doped organic polymers poled on silicon substrate in a thin film sample configuration. We reveal a fundamental difference between the poling processes on silicon substrate and ITO substrate. The electro-optic activity for polymers poled on silicon substrate is reduced which we ascribe to space charge formation at the silicon - organic interface that distorts the field distribution in the polymer film during high field poling, and therefore limits the effective induced polar order. We demonstrate that the electro-optic activity on silicon substrate can be improved by inserting a 5 nm thin dielectric layer of Al2O3 between the silicon substrate and the polymer which reduces the leak-through current during poling, thereby allowing for higher applicable poling voltages.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient wafer-scale poling of electro-optic polymer thin films on soda-lime glass substrates: large second-order nonlinear coefficients and exceptional homogeneity of optical birefringence

Jingdong Luo, Dong Hun Park, Roland Himmelhuber, Zong-Long Zhu, Ming Li, Robert A. Norwood, and Alex K-Y. Jen
Opt. Mater. Express 7(6) 1909-1916 (2017)

Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators

Y. Jouane, Y-C. Chang, D. Zhang, J. Luo, A. K-Y. Jen, and Y. Enami
Opt. Express 22(22) 27725-27732 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Sharif Azadeh, F. Merget, M. P. Nezhad, and J. Witzens, “On the measurement of the Pockels effect in strained silicon,” Opt. Lett. 40(8), 1877–1880 (2015).
    [Crossref] [PubMed]
  2. J. Luo and A. K.-Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42–53 (2013).
    [Crossref]
  3. T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
    [Crossref]
  4. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
    [Crossref]
  5. R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
    [Crossref]
  6. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
    [Crossref]
  7. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
    [Crossref]
  8. X. Zhang, H. Subbaraman, A. Hosseini, and R. T. Chen, “Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide,” Opt. Express 22(17), 20678–20690 (2014).
    [Crossref] [PubMed]
  9. M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
    [Crossref]
  10. M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro‐optic polymers,” Appl. Phys. Lett. 69(20), 2962–2964 (1996).
    [Crossref]
  11. R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15(1), 318–328 (1998).
    [Crossref]
  12. T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
    [Crossref]
  13. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
    [Crossref] [PubMed]
  14. J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
    [Crossref]
  15. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
    [Crossref]
  16. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
    [Crossref]
  17. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
    [Crossref] [PubMed]
  18. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
    [Crossref] [PubMed]
  19. X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
    [Crossref] [PubMed]
  20. R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
    [Crossref]
  21. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
    [Crossref] [PubMed]
  22. R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
    [Crossref]
  23. S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
    [Crossref]
  24. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
    [Crossref]
  25. F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
    [Crossref]
  26. F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
    [Crossref]
  27. S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
    [Crossref]
  28. H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
    [Crossref]
  29. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
    [Crossref]
  30. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
    [Crossref] [PubMed]
  31. Y. Jouane, Y.-C. Chang, D. Zhang, J. Luo, A. K.-Y. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators,” Opt. Express 22(22), 27725–27732 (2014).
    [PubMed]
  32. A. C. Lilly and J. R. McDowell, “High‐field conduction in films of mylar and teflon,” J. Appl. Phys. 39(1), 141–147 (1968).
    [Crossref]
  33. Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
    [Crossref]
  34. A. Cola, “Reverse current in SI GaAs pixel detectors,” Proceedings of the Fifth International Workshop on GaAs Detectors and Related Compounds410, 85–91 (1998).
    [Crossref]
  35. M. Rogalla and K. Runge, “Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance,” Nucl. Instrum. Methods Phys. Res, Sect. A 434, 44–56 (1999).
  36. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, 1988).

2015 (1)

2014 (6)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, H. Subbaraman, A. Hosseini, and R. T. Chen, “Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide,” Opt. Express 22(17), 20678–20690 (2014).
[Crossref] [PubMed]

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

Y. Jouane, Y.-C. Chang, D. Zhang, J. Luo, A. K.-Y. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators,” Opt. Express 22(22), 27725–27732 (2014).
[PubMed]

2013 (5)

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

J. Luo and A. K.-Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42–53 (2013).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

2011 (3)

2010 (4)

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref] [PubMed]

2009 (1)

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

2008 (4)

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

2006 (1)

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

2005 (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[Crossref]

1999 (2)

M. Rogalla and K. Runge, “Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance,” Nucl. Instrum. Methods Phys. Res, Sect. A 434, 44–56 (1999).

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
[Crossref]

1998 (1)

1997 (1)

Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
[Crossref]

1996 (1)

M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro‐optic polymers,” Appl. Phys. Lett. 69(20), 2962–2964 (1996).
[Crossref]

1990 (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

1989 (1)

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

1968 (1)

A. C. Lilly and J. R. McDowell, “High‐field conduction in films of mylar and teflon,” J. Appl. Phys. 39(1), 141–147 (1968).
[Crossref]

Alloatti, L.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Baehr-Jones, T.

Baehr-Jones, T. W.

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

Baets, R.

Baier, M.

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

Barklund, A.

Belardini, A.

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

Beling, C. D.

Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
[Crossref]

Benight, S.

Bertolotti, M.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
[Crossref]

Bjorklund, G. C.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Blum, R.

R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15(1), 318–328 (1998).
[Crossref]

M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro‐optic polymers,” Appl. Phys. Lett. 69(20), 2962–2964 (1996).
[Crossref]

Bogaerts, W.

Bojko, R.

Bolten, J.

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

Bruns, J.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

Chakravarty, S.

Chang, Y.-C.

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Chen, H.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Chen, R. T.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

X. Zhang, H. Subbaraman, A. Hosseini, and R. T. Chen, “Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide,” Opt. Express 22(17), 20678–20690 (2014).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Chen, T. P.

Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
[Crossref]

Cheng, Y.-J.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Cola, A.

A. Cola, “Reverse current in SI GaAs pixel detectors,” Proceedings of the Fifth International Workshop on GaAs Detectors and Related Compounds410, 85–91 (1998).
[Crossref]

Dalton, L.

Dalton, L. R.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Davies, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Di Falco, A.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

Ding, R.

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Dumon, P.

Eich, M.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15(1), 318–328 (1998).
[Crossref]

M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro‐optic polymers,” Appl. Phys. Lett. 69(20), 2962–2964 (1996).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Elder, D. L.

Enami, Y.

Fedeli, J.

Fedeli, J. M.

Fedeli, J.-M.

Fournier, M.

Freude, W.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Fung, S.

Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
[Crossref]

Gould, M.

Hampe, J.

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

Hau, S.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Hau, S. K.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Heni, W.

Hillerkuss, D.

Hochberg, M.

Hochberg, M. J.

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

Hosseini, A.

Huang, D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Huang, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Huang, S.

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref] [PubMed]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Jacob, A.

Jang, S.-H.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Jen, A.

Jen, A. K.

Jen, A. K. Y.

Jen, A. K.-Y.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

Y. Jouane, Y.-C. Chang, D. Zhang, J. Luo, A. K.-Y. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators,” Opt. Express 22(22), 27725–27732 (2014).
[PubMed]

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

J. Luo and A. K.-Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42–53 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Jenett, M.

Jin, D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Jouane, Y.

Kim, T.-D.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Koeber, S.

Koos, C.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Korn, D.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Krauss, T. F.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

Lai, W.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Lauermann, M.

Lee, B. S.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Leuthold, J.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Li, J.

Lilly, A. C.

A. C. Lilly and J. R. McDowell, “High‐field conduction in films of mylar and teflon,” J. Appl. Phys. 39(1), 141–147 (1968).
[Crossref]

Lin, C.-Y.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Lin, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

Liu, Y.

Looser, H.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Luo, J.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

Y. Jouane, Y.-C. Chang, D. Zhang, J. Luo, A. K.-Y. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators,” Opt. Express 22(22), 27725–27732 (2014).
[PubMed]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

J. Luo and A. K.-Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42–53 (2013).
[Crossref]

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Luo, J. D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Luo, Y. L.

Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
[Crossref]

Ma, H.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

McDowell, J. R.

A. C. Lilly and J. R. McDowell, “High‐field conduction in films of mylar and teflon,” J. Appl. Phys. 39(1), 141–147 (1968).
[Crossref]

Merget, F.

Michelotti, F.

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
[Crossref]

Mueller, J.

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

Nezhad, M. P.

Nicolao, G.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
[Crossref]

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

Penkov, B.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Petrov, A.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

Polishak, B.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Prorok, S.

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[Crossref]

Ratsimihety, A.

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

Rogalla, M.

M. Rogalla and K. Runge, “Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance,” Nucl. Instrum. Methods Phys. Res, Sect. A 434, 44–56 (1999).

Rousseau, A.

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

Runge, K.

M. Rogalla and K. Runge, “Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance,” Nucl. Instrum. Methods Phys. Res, Sect. A 434, 44–56 (1999).

Sablotny, J.

Scherer, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Schindler, P. C.

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

Schoer, G.

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

Sen, A.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Sharif Azadeh, S.

Shi, Z.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Sprave, M.

R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15(1), 318–328 (1998).
[Crossref]

M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro‐optic polymers,” Appl. Phys. Lett. 69(20), 2962–2964 (1996).
[Crossref]

Subbaraman, H.

Sullivan, P.

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref] [PubMed]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Swalen, J. D.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Takayesu, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Tesi, F.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
[Crossref]

Tian, Y.

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Twieg, R.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Wahlbrink, T.

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

Waldow, M.

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

Wang, S.

Wang, X.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Wieland, J.

Witzens, J.

Woessner, M.

Wülbern, J. H.

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

Yip, H.-L.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Yoon, D. Y.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

Yu, H.

Zhan, Q.

Zhang, D.

Zhang, X.

Zhou, X.-H.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

Appl. Phys. Lett. (8)

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[Crossref]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. R. Dalton, A. K.-Y. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro‐optic polymers,” Appl. Phys. Lett. 69(20), 2962–2964 (1996).
[Crossref]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro‐optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

S. Prorok, A. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients,” Appl. Phys. Lett. 105(11), 113302 (2014).
[Crossref]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Chem. Phys. (1)

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245(1-3), 311–326 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Luo and A. K.-Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42–53 (2013).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” IEEE Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

J. Appl. Phys. (3)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[Crossref]

A. C. Lilly and J. R. McDowell, “High‐field conduction in films of mylar and teflon,” J. Appl. Phys. 39(1), 141–147 (1968).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real‐time second‐harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66(6), 2559–2567 (1989).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, “Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm,” J. Non-Cryst. Solids 352(23-25), 2339–2342 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K.-Y. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Light Sci Appl (1)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci Appl 3(5), e173 (2014).
[Crossref]

Nucl. Instrum. Methods Phys. Res, Sect. A (1)

M. Rogalla and K. Runge, “Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance,” Nucl. Instrum. Methods Phys. Res, Sect. A 434, 44–56 (1999).

Opt. Express (5)

Opt. Lett. (4)

Photon. Technol. Lett. (1)

R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Low power Mach–Zehnder modulator in silicon-organic hybrid technology,” Photon. Technol. Lett. 25(13), 1226–1229 (2013).
[Crossref]

Solid State Commun. (1)

Y. L. Luo, T. P. Chen, S. Fung, and C. D. Beling, “Reverse I–V characteristics of Au/semi-insulating GaAs(1 0 0),” Solid State Commun. 101(9), 715–720 (1997).
[Crossref]

Other (2)

A. Cola, “Reverse current in SI GaAs pixel detectors,” Proceedings of the Fifth International Workshop on GaAs Detectors and Related Compounds410, 85–91 (1998).
[Crossref]

E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the sample geometry for samples with different electrode materials. (a): ITO-glass electrode. (b): silicon electrode. (c): Al2O3 coated silicon electrode.
Fig. 2
Fig. 2 r33 for different electrode materials plotted versus the poling field (Epol). Blue squares: r33 of TFSSi. Red triangles: r33 of TFSSi + Al2O3. Black circles: r33 of TFSITO.
Fig. 3
Fig. 3 Current density and temperature vs. time in poling experiments at Epol = 100 V/μm for TFSSi (a) and TFSSi + Al2O3 (b). In the poling procedure the samples were heated to T = 145°C at a rate of 10°C/min and subsequently cooled down. The electric field remained constant during the process.
Fig. 4
Fig. 4 Current density as a function of the square root of the applied electric field for TFSSi (blue) and TFSITO (black). All data was acquired at a temperature of 140°C – close to the glass transition temperature of the doped polymer.

Metrics