Abstract

High quality regular surface rippling is observed for certain UV exposure conditions. Self-aligning microstructures are created on poly allyl diglycol carbonate samples using UV laser at 193 nm for a range of incidence angles. The treated area is notably enlarged at higher incidence angles while the fluence threshold and corresponding UV dose required to achieve those periodic structures is significantly reduced. Despite the spatial period remains nearly invariant versus dose and fluence at a certain incident angle; however the self-aligning orientation always aligns along the P-polarization component of the incident beam.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses

Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu
Opt. Express 19(24) 24286-24297 (2011)

Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold

A. Reyes-Contreras, M. Camacho-López, S. Camacho-López, O. Olea-Mejía, A. Esparza-García, J. G. Bañuelos-Muñetón, and M. A. Camacho-López
Opt. Mater. Express 7(6) 1777-1786 (2017)

Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation

S. H. Messaddeq, R. Vallée, P. Soucy, M. Bernier, M. El-Amraoui, and Y. Messaddeq
Opt. Express 20(28) 29882-29889 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
    [Crossref]
  2. B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
    [Crossref]
  3. R. Srinivasan, “Self-developing photoetching of poly(ethylene terephthalate) films by far- ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41(6), 576–578 (1982).
    [Crossref]
  4. P. E. Dyer, S. D. Jenkins, and J. Sidhu, “Development and origin of conical structures on XeCl laser ablated polyimide,” Appl. Phys. Lett. 49(8), 453–455 (1986).
    [Crossref]
  5. S. Küper and M. Stuke, “Femtosecond UV excimer laser ablation,” Appl. Phys. B 44(4), 199–204 (1987).
    [Crossref]
  6. P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74(2), 1442–1444 (1993).
    [Crossref]
  7. Y. Kawamura, K. Toyoda, and S. Nambo, “Effective deep ultraviolet photoetching of poly methyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40(5), 374–375 (1982).
    [Crossref]
  8. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
    [Crossref]
  9. S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
    [Crossref]
  10. H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
    [Crossref]
  11. P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
    [Crossref]
  12. B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
    [Crossref]
  13. B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
    [Crossref]
  14. V. Oliveira and R. Vilar, “KrF pulsed laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 92(4), 957–961 (2008).
    [Crossref]
  15. E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
    [Crossref] [PubMed]
  16. R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
    [Crossref]
  17. J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
    [Crossref]
  18. R. Srinivasan, E. Sutcliuffe, and B. Braren, “Ablation and etching of poly methyl methacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51(16), 1285–1287 (1987).
    [Crossref]
  19. R. Zakaria and R. M. Scott, “Interaction of 157 nm excimer laser on pristine and radiation exposed CR39 polymer,” Appl. Surf. Sci. 274, 53–59 (2013).
    [Crossref]
  20. W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
    [Crossref]
  21. L. M. Kokreja, “Laser processing of polymers, an overview,” Bull. Mater. Sci. 11(2–3), 225–238 (1988).
    [Crossref]
  22. R. Zakaria and P. E. Dyer, “Cone evolution on the ablated polymers,” Appl. Phys A Mater. Sci. Process. 101(1), 13–18 (2010).
    [Crossref]
  23. Sh. Bashir, M. Sh. Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
    [Crossref]
  24. W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
    [Crossref]
  25. P. E. Dyer and R. J. Farley, “Periodic surface structure in the excimer laser ablative etching of polymers,” Appl. Phys. Lett. 57(8), 765–767 (1990).
    [Crossref]
  26. H. Hiraoka and M. Sendova, “Laser induced sub-half-micrometer periodic structure on polymer surfaces,” Appl. Phys. Lett. 64(5), 563–565 (1994).
    [Crossref]
  27. M. Csete and Zs. Bor, “Laser induced periodic surface structure formation on polyethylene-terephthalate,” Appl. Surf. Sci. 133(1-2), 5–16 (1998).
    [Crossref]
  28. P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
    [Crossref]
  29. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [Crossref]
  30. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  31. C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
    [Crossref]
  32. Zh. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [Crossref]
  33. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(1), 1–6 (2006).
  34. G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
    [Crossref]
  35. H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
    [Crossref]
  36. P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, and P. Aghaii, “A novel method for fabrication of diffractive grating using high dose excimer laser irradiation,” Iranian patent registration no: 82086, registration date: Feb. 16, 2014.

2014 (2)

W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
[Crossref]

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

2013 (4)

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

R. Zakaria and R. M. Scott, “Interaction of 157 nm excimer laser on pristine and radiation exposed CR39 polymer,” Appl. Surf. Sci. 274, 53–59 (2013).
[Crossref]

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

2012 (1)

Sh. Bashir, M. Sh. Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

2010 (3)

R. Zakaria and P. E. Dyer, “Cone evolution on the ablated polymers,” Appl. Phys A Mater. Sci. Process. 101(1), 13–18 (2010).
[Crossref]

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

2008 (2)

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

V. Oliveira and R. Vilar, “KrF pulsed laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 92(4), 957–961 (2008).
[Crossref]

2007 (1)

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

2006 (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(1), 1–6 (2006).

2005 (2)

P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
[Crossref]

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

2003 (1)

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

2000 (1)

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

1998 (1)

M. Csete and Zs. Bor, “Laser induced periodic surface structure formation on polyethylene-terephthalate,” Appl. Surf. Sci. 133(1-2), 5–16 (1998).
[Crossref]

1994 (2)

H. Hiraoka and M. Sendova, “Laser induced sub-half-micrometer periodic structure on polymer surfaces,” Appl. Phys. Lett. 64(5), 563–565 (1994).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

1993 (1)

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74(2), 1442–1444 (1993).
[Crossref]

1990 (1)

P. E. Dyer and R. J. Farley, “Periodic surface structure in the excimer laser ablative etching of polymers,” Appl. Phys. Lett. 57(8), 765–767 (1990).
[Crossref]

1989 (1)

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

1988 (1)

L. M. Kokreja, “Laser processing of polymers, an overview,” Bull. Mater. Sci. 11(2–3), 225–238 (1988).
[Crossref]

1987 (2)

R. Srinivasan, E. Sutcliuffe, and B. Braren, “Ablation and etching of poly methyl methacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51(16), 1285–1287 (1987).
[Crossref]

S. Küper and M. Stuke, “Femtosecond UV excimer laser ablation,” Appl. Phys. B 44(4), 199–204 (1987).
[Crossref]

1986 (1)

P. E. Dyer, S. D. Jenkins, and J. Sidhu, “Development and origin of conical structures on XeCl laser ablated polyimide,” Appl. Phys. Lett. 49(8), 453–455 (1986).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (3)

Zh. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

R. Srinivasan, “Self-developing photoetching of poly(ethylene terephthalate) films by far- ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41(6), 576–578 (1982).
[Crossref]

Y. Kawamura, K. Toyoda, and S. Nambo, “Effective deep ultraviolet photoetching of poly methyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40(5), 374–375 (1982).
[Crossref]

1978 (1)

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
[Crossref]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Aghaii, P.

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

Al-Ghamdi, S. S.

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Al-Salhi, M. S.

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Amiri, N.

P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
[Crossref]

Baig, M. R.

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Bashir, Sh.

Sh. Bashir, M. Sh. Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Baudach, S.

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

Bonse, J.

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

Bor, Zs.

M. Csete and Zs. Bor, “Laser induced periodic surface structure formation on polyethylene-terephthalate,” Appl. Surf. Sci. 133(1-2), 5–16 (1998).
[Crossref]

Braren, B.

R. Srinivasan, E. Sutcliuffe, and B. Braren, “Ablation and etching of poly methyl methacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51(16), 1285–1287 (1987).
[Crossref]

Castillejo, M.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Csete, M.

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

M. Csete and Zs. Bor, “Laser induced periodic surface structure formation on polyethylene-terephthalate,” Appl. Surf. Sci. 133(1-2), 5–16 (1998).
[Crossref]

Domingo, C.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Dorronsoro, C.

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

Dyer, P. E.

R. Zakaria and P. E. Dyer, “Cone evolution on the ablated polymers,” Appl. Phys A Mater. Sci. Process. 101(1), 13–18 (2010).
[Crossref]

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74(2), 1442–1444 (1993).
[Crossref]

P. E. Dyer and R. J. Farley, “Periodic surface structure in the excimer laser ablative etching of polymers,” Appl. Phys. Lett. 57(8), 765–767 (1990).
[Crossref]

P. E. Dyer, S. D. Jenkins, and J. Sidhu, “Development and origin of conical structures on XeCl laser ablated polyimide,” Appl. Phys. Lett. 49(8), 453–455 (1986).
[Crossref]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Ezquerra, T. A.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Fahrner, M.

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

Farley, R. J.

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74(2), 1442–1444 (1993).
[Crossref]

P. E. Dyer and R. J. Farley, “Periodic surface structure in the excimer laser ablative etching of polymers,” Appl. Phys. Lett. 57(8), 765–767 (1990).
[Crossref]

Farooq, W. A.

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Fatehmulla, A.

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Fauchet, P.

Zh. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Guosheng, Zh.

Zh. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Harris, G. L.

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
[Crossref]

Heitz, J.

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

Hernández, M.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Hiraoka, H.

H. Hiraoka and M. Sendova, “Laser induced sub-half-micrometer periodic structure on polymer surfaces,” Appl. Phys. Lett. 64(5), 563–565 (1994).
[Crossref]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Husinsky, W.

Sh. Bashir, M. Sh. Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Jaleh, B.

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
[Crossref]

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

Jelvani, S.

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

Jenkins, S. D.

P. E. Dyer, S. D. Jenkins, and J. Sidhu, “Development and origin of conical structures on XeCl laser ablated polyimide,” Appl. Phys. Lett. 49(8), 453–455 (1986).
[Crossref]

Kam, W.

W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
[Crossref]

Katoozi, M.

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

Kaufmann, D.

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

Kautek, W.

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

Kawamura, Y.

Y. Kawamura, K. Toyoda, and S. Nambo, “Effective deep ultraviolet photoetching of poly methyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40(5), 374–375 (1982).
[Crossref]

Kemkemer, R.

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

Kokreja, L. M.

L. M. Kokreja, “Laser processing of polymers, an overview,” Bull. Mater. Sci. 11(2–3), 225–238 (1988).
[Crossref]

Kolska, Z.

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

Kruger, J.

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

Kumagai, H.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Küper, S.

S. Küper and M. Stuke, “Femtosecond UV excimer laser ablation,” Appl. Phys. B 44(4), 199–204 (1987).
[Crossref]

Lee, C. A.

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
[Crossref]

Lim, W. H.

W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
[Crossref]

Mahdilu, A.

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

Maracas, G. N.

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
[Crossref]

Martín-Fabiani, I.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

McFarlane, R. A.

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
[Crossref]

Midorikawa, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Miki, T.

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

Moreno, P.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Mortazavi, S. Z.

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

Nagano, Sh.

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

Nakamura, S.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Nakano, M.

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

Nambo, S.

Y. Kawamura, K. Toyoda, and S. Nambo, “Effective deep ultraviolet photoetching of poly methyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40(5), 374–375 (1982).
[Crossref]

Niino, H.

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

Obara, M.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Oghlu, F. Y.

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Okamoto, T.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Oliveira, V.

V. Oliveira and R. Vilar, “KrF pulsed laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 92(4), 957–961 (2008).
[Crossref]

Ong, Y. S.

W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
[Crossref]

Parvin, P.

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
[Crossref]

Pourakbar Saffar, A.

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Rafique, M. Sh.

Sh. Bashir, M. Sh. Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Rebollar, E.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Refahizadeh, M.

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

Reisinger, B.

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

Reyhani, A.

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

Romanin, C.

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

Rueda, D. R.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Sajad, B.

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

Sajdl, P.

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

Schrank, S.

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

Scott, R. M.

R. Zakaria and R. M. Scott, “Interaction of 157 nm excimer laser on pristine and radiation exposed CR39 polymer,” Appl. Surf. Sci. 274, 53–59 (2013).
[Crossref]

Sendova, M.

H. Hiraoka and M. Sendova, “Laser induced sub-half-micrometer periodic structure on polymer surfaces,” Appl. Phys. Lett. 64(5), 563–565 (1994).
[Crossref]

Sheikh, N.

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
[Crossref]

Sidhu, J.

P. E. Dyer, S. D. Jenkins, and J. Sidhu, “Development and origin of conical structures on XeCl laser ablated polyimide,” Appl. Phys. Lett. 49(8), 453–455 (1986).
[Crossref]

Siegel, J.

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

Siegman, A.

Zh. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Silakhori, K.

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Slepicka, P.

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

Spatz, J.

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

Srinivasan, R.

R. Srinivasan, E. Sutcliuffe, and B. Braren, “Ablation and etching of poly methyl methacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51(16), 1285–1287 (1987).
[Crossref]

R. Srinivasan, “Self-developing photoetching of poly(ethylene terephthalate) films by far- ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41(6), 576–578 (1982).
[Crossref]

Stuke, M.

S. Küper and M. Stuke, “Femtosecond UV excimer laser ablation,” Appl. Phys. B 44(4), 199–204 (1987).
[Crossref]

Sutcliuffe, E.

R. Srinivasan, E. Sutcliuffe, and B. Braren, “Ablation and etching of poly methyl methacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51(16), 1285–1287 (1987).
[Crossref]

Svorcik, V.

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

Taheri, M.

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

Tan, B.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(1), 1–6 (2006).

Toyoda, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Y. Kawamura, K. Toyoda, and S. Nambo, “Effective deep ultraviolet photoetching of poly methyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40(5), 374–375 (1982).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vázquez de Aldana, J. R.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Venkatakrishnan, K.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(1), 1–6 (2006).

Vilar, R.

V. Oliveira and R. Vilar, “KrF pulsed laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 92(4), 957–961 (2008).
[Crossref]

Wanichapichart, P.

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Yabe, A.

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zakaria, R.

W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
[Crossref]

R. Zakaria and R. M. Scott, “Interaction of 157 nm excimer laser on pristine and radiation exposed CR39 polymer,” Appl. Surf. Sci. 274, 53–59 (2013).
[Crossref]

R. Zakaria and P. E. Dyer, “Cone evolution on the ablated polymers,” Appl. Phys A Mater. Sci. Process. 101(1), 13–18 (2010).
[Crossref]

Zamani, Z.

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

Zamanipour, Z.

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

Zangeneh, H. R.

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

Zare, A.

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

Acta Phys. Pol. A (1)

W. A. Farooq, M. R. Baig, A. Fatehmulla, M. S. Al-Salhi, S. S. Al-Ghamdi, and F. Y. Oghlu, “Controlling of optical band gap of allyl diglycol carbonate polymer with ultraviolet laser radiation,” Acta Phys. Pol. A 123(1), 106–110 (2013).
[Crossref]

Appl. Phys A Mater. Sci. Process. (1)

R. Zakaria and P. E. Dyer, “Cone evolution on the ablated polymers,” Appl. Phys A Mater. Sci. Process. 101(1), 13–18 (2010).
[Crossref]

Appl. Phys. B (1)

S. Küper and M. Stuke, “Femtosecond UV excimer laser ablation,” Appl. Phys. B 44(4), 199–204 (1987).
[Crossref]

Appl. Phys. Lett. (10)

R. Srinivasan, “Self-developing photoetching of poly(ethylene terephthalate) films by far- ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41(6), 576–578 (1982).
[Crossref]

P. E. Dyer, S. D. Jenkins, and J. Sidhu, “Development and origin of conical structures on XeCl laser ablated polyimide,” Appl. Phys. Lett. 49(8), 453–455 (1986).
[Crossref]

Y. Kawamura, K. Toyoda, and S. Nambo, “Effective deep ultraviolet photoetching of poly methyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40(5), 374–375 (1982).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, “On the origin of periodic surface structure of laser annealed semiconductors,” Appl. Phys. Lett. 33(5), 453–455 (1978).
[Crossref]

H. Niino, M. Nakano, Sh. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55(5), 510–512 (1989).
[Crossref]

R. Srinivasan, E. Sutcliuffe, and B. Braren, “Ablation and etching of poly methyl methacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51(16), 1285–1287 (1987).
[Crossref]

P. E. Dyer and R. J. Farley, “Periodic surface structure in the excimer laser ablative etching of polymers,” Appl. Phys. Lett. 57(8), 765–767 (1990).
[Crossref]

H. Hiraoka and M. Sendova, “Laser induced sub-half-micrometer periodic structure on polymer surfaces,” Appl. Phys. Lett. 64(5), 563–565 (1994).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

V. Oliveira and R. Vilar, “KrF pulsed laser ablation of polyimide,” Appl. Phys., A Mater. Sci. Process. 92(4), 957–961 (2008).
[Crossref]

Appl. Surf. Sci. (6)

B. Jaleh, P. Parvin, P. Wanichapichart, A. Pourakbar Saffar, and A. Reyhani, “Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma,” Appl. Surf. Sci. 257(5), 1655–1659 (2010).
[Crossref]

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, and V. Svorcik, “Gold nano-wires and nano-layers at laser-induced nano-ripples on PET,” Appl. Surf. Sci. 256(7), 2205–2209 (2010).
[Crossref]

M. Csete and Zs. Bor, “Laser induced periodic surface structure formation on polyethylene-terephthalate,” Appl. Surf. Sci. 133(1-2), 5–16 (1998).
[Crossref]

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, A. Mahdilu, and P. Aghaii, “Regular self-microstructuring on CR39 using high UV laser dose,” Appl. Surf. Sci. 292, 247–255 (2014).
[Crossref]

R. Zakaria and R. M. Scott, “Interaction of 157 nm excimer laser on pristine and radiation exposed CR39 polymer,” Appl. Surf. Sci. 274, 53–59 (2013).
[Crossref]

Bull. Mater. Sci. (1)

L. M. Kokreja, “Laser processing of polymers, an overview,” Bull. Mater. Sci. 11(2–3), 225–238 (1988).
[Crossref]

J. Appl. Phys. (2)

C. Dorronsoro, J. Bonse, and J. Siegel, “Self-assembly of a new type of periodic surface structure in a copolymer by excimer laser irradiation above the ablation threshold,” J. Appl. Phys. 114(15), 153105 (2013).
[Crossref]

P. E. Dyer and R. J. Farley, “Dynamics of laser-induced periodic surface structures in excimer laser ablation of polymers,” J. Appl. Phys. 74(2), 1442–1444 (1993).
[Crossref]

J. Micromech. Microeng. (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(1), 1–6 (2006).

Mater. Sci. Eng. C (1)

R. Kemkemer, M. Csete, S. Schrank, D. Kaufmann, and J. Spatz, “The determination of the morphology of melanocytes by laser-generated periodic surface structures,” Mater. Sci. Eng. C 23(3), 437–440 (2003).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (2)

B. Jaleh, P. Parvin, N. Sheikh, Z. Zamanipour, and B. Sajad, “Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser,” Nucl. Instrum. Methods Phys. Res. B 265(1), 330–333 (2007).
[Crossref]

Sh. Bashir, M. Sh. Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Opt. Lasers Eng. (1)

W. Kam, Y. S. Ong, W. H. Lim, and R. Zakaria, “Laser ablation and waveguide fabrication using CR39 polymer,” Opt. Lasers Eng. 55, 1–4 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zh. Guosheng, P. Fauchet, and A. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Radiat. Eff. Defect. S (1)

H. R. Zangeneh, P. Parvin, Z. Zamanipour, B. Jaleh, S. Jelvani, and M. Taheri, “Submicron steructural alteration of polycarbonate surface due to ArF laser irradiation at high doses and the subsequent electro-chemical etching treatment,” Radiat. Eff. Defect. S 163(11), 863–871 (2008).
[Crossref]

Radiat. Meas. (2)

P. Parvin, B. Jaleh, N. Sheikh, and N. Amiri, “Surface effect of KrF laser exposure on ECE of alpha particle tracks in polycarbonate polyme,” Radiat. Meas. 40(2–6), 775–779 (2005).
[Crossref]

B. Jaleh, P. Parvin, M. Katoozi, Z. Zamani, and A. Zare, “Etching microscopic defects in polycarbonate due to high dose ArF or KrF laser exposure,” Radiat. Meas. 40(2–6), 731–735 (2005).
[Crossref]

Other (2)

J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, and V. Svorcik, “Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces,” International Conference on Transparent Optical Networks (UK, 2012), pp.1- 4.
[Crossref]

P. Parvin, M. Refahizadeh, S. Z. Mortazavi, K. Silakhori, and P. Aghaii, “A novel method for fabrication of diffractive grating using high dose excimer laser irradiation,” Iranian patent registration no: 82086, registration date: Feb. 16, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Schematic illustration of UV irradiation on CR39 where n̂ is the normal to the surface (the normal incidence takes place at φ = 0°). The incident plane includes n ^ and the incident beam. b) Typical SEM images and corresponding FFTs. Insets show 2D-FFTs: the contours are described by circles whereas a couple of focused spots are attributed to the self-aligning structure. The solid line and spots are artificially added for better clarification. The dot line is a hypothetical line that connects the spots to exhibit that it is normal to the self-aligning direction. The SEM images of laser induced self-microstructuring in terms of incident angle for c) φ = 0°, d) φ = 10°, e) φ = 30°, f) φ = 60°. g) V R indicates self-aligning direction that is vector summation of two components of orthogonal P-polarization of incident beams. h) Random contour with no self-created direction. Note that un-polarized ArF laser shot is used here. Top insets are the magnified SEM images (2 μm scale).
Fig. 2
Fig. 2 a) The spatial period at different incidence angles. b) Self-aligning spatial period versus incident fluence at φ = 0° (blue rectangles) and φ = 30° (red triangles) incident angles. Insets delineate the variation of the correspondent line density in terms of incident angle and fluence respectively.
Fig. 3
Fig. 3 a) Variation of self-aligning spatial period versus shot numbers at φ = 30° incidence angle (red triangles) and normal-incidence (blue rectangles), with 700 mJ/cm2 fluence. Inset delineates the variation of the corresponding SEM images. b) Threshold fluence for regular self-aligning on CR39 in terms of the incidence angles.
Fig. 4
Fig. 4 The height variation of self-aligning in terms of UV dose; the corresponding STM images are shown as the peripheral insets with the area of 8μm × 8μm. The central inset depicts the typical STM graph of patterns with 52 J/cm2 UV exposure.

Metrics