Abstract

This paper concerns the influence on proton exchange in the modified lithium niobate by 200 keV He ion implantation at liquid nitrogen temperature. The Rutherford backscattering/channelling spectra revealed the damage undergoing the different conditions treatment. Experimental data showed that there were some influences on proton exchange due to the damage and defects induced by He ion implantation. The planar waveguides were fabricated by proton exchange combined with He ion implantation. The dark mode spectra were observed and the near-field intensity distribution of one waveguide is detected. The estimated propagation loss was 2.0 dB/cm at 633 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation

Shao-Mei Zhang, Ke-Ming Wang, Xiangzhi Liu, Zhuanfang Bi, and Xiu-Hong Liu
Opt. Express 18(15) 15609-15617 (2010)

Micro-structure analysis of He+ ion implanted KTP by TEM

Yu-Jie Ma, Fei Lu, M. C. Ridgway, Chang-Dong Ma, and Bo Xu
Opt. Mater. Express 5(5) 986-995 (2015)

Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation

Lei Wang, Ke-Ming Wang, Feng Chen, Xue-Lin Wang, Liang-Ling Wang, Hong Liu, and Qing-Ming Lu
Opt. Express 15(25) 16880-16885 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [Crossref]
  2. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
    [Crossref] [PubMed]
  3. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
    [Crossref]
  4. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D Appl. Phys. 43(7), 075105 (2010).
    [Crossref]
  5. L. Mutter, A. Guarino, M. Jazbinšek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15(2), 629–638 (2007).
    [Crossref] [PubMed]
  6. S. H. Wemple, J. M. DiDomenico, and I. Camlibel, “Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Appl. Phys. Lett. 12(6), 209–211 (1968).
    [Crossref]
  7. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
    [Crossref]
  8. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, 1994).
  9. F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
    [Crossref]
  10. E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Sec. B 46, 156–159 (1990).
  11. S.-M. Zhang, K.-M. Wang, X. Liu, Z. Bi, and X.-H. Liu, “Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation,” Opt. Express 18(15), 15609–15617 (2010).
    [Crossref] [PubMed]
  12. Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).
  13. L. C. Feldman and J. W. Rodgers, “Depth profile of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
    [Crossref]
  14. P. J. F. Ziegler, Computer code SRIM ( http://www. srim.org ).
  15. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
    [PubMed]
  16. H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
    [Crossref]
  17. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
    [Crossref]
  18. Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
    [Crossref]
  19. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [Crossref]
  20. B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
    [Crossref]
  21. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
    [Crossref]

2012 (1)

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

2010 (2)

2007 (4)

L. Mutter, A. Guarino, M. Jazbinšek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15(2), 629–638 (2007).
[Crossref] [PubMed]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

2004 (3)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

2002 (2)

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[Crossref]

2001 (1)

2000 (1)

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
[Crossref]

1995 (1)

H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[Crossref]

1990 (1)

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Sec. B 46, 156–159 (1990).

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

1970 (1)

L. C. Feldman and J. W. Rodgers, “Depth profile of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

1968 (1)

S. H. Wemple, J. M. DiDomenico, and I. Camlibel, “Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Appl. Phys. Lett. 12(6), 209–211 (1968).
[Crossref]

Ahlfeldt, H.

H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[Crossref]

Argiolas, N.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Atuchin, V. V.

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
[Crossref]

Bazzan, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Benkelfat, B.-E.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Bentini, G. G.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Bi, Z.

Bianconi, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Camlibel, I.

S. H. Wemple, J. M. DiDomenico, and I. Camlibel, “Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Appl. Phys. Lett. 12(6), 209–211 (1968).
[Crossref]

Chen, F.

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D Appl. Phys. 43(7), 075105 (2010).
[Crossref]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[PubMed]

Chiarini, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Correra, L.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

DiDomenico, J. M.

S. H. Wemple, J. M. DiDomenico, and I. Camlibel, “Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Appl. Phys. Lett. 12(6), 209–211 (1968).
[Crossref]

Döbeli, M.

Feldman, L. C.

L. C. Feldman and J. W. Rodgers, “Depth profile of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Ferrière, R.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Foad, M. A.

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Sec. B 46, 156–159 (1990).

Glavas, E.

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Sec. B 46, 156–159 (1990).

Grusemann, U.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

Guarino, A.

Günter, P.

Guo, S.-S.

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

Guzzi, R.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Hu, H.

Huang, Q.

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Jazbinšek, M.

Jia, C.-L.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

Jiang, Y.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Liu, H.

Liu, P.

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

Liu, T.

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

Liu, X.

Liu, X.-H.

Lu, F.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[PubMed]

Lu, Q. M.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[Crossref]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Mollier, P.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Mutter, L.

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Opfermann, T.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[Crossref]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Rodgers, J. W.

L. C. Feldman and J. W. Rodgers, “Depth profile of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Ruske, J. P.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

Sada, C.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

Schrempel, F.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

Shen, D.-Y.

Shi, B.-R.

Tan, Y.

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D Appl. Phys. 43(7), 075105 (2010).
[Crossref]

Teat, S. J.

H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[Crossref]

Thomas, P. A.

H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[Crossref]

Townsend, P. D.

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Sec. B 46, 156–159 (1990).

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Wacogne, B.

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

Wang, K. M.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, K.-M.

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

Wang, L. L.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[Crossref] [PubMed]

Wang, X.-L.

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

Webjorn, J.

H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[Crossref]

Wemple, S. H.

S. H. Wemple, J. M. DiDomenico, and I. Camlibel, “Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Appl. Phys. Lett. 12(6), 209–211 (1968).
[Crossref]

Wesch, W.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

Zgonik, M.

Zhang, S.-M.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

S. H. Wemple, J. M. DiDomenico, and I. Camlibel, “Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Appl. Phys. Lett. 12(6), 209–211 (1968).
[Crossref]

Chin. Phys. B (1)

Q. Huang, P. Liu, T. Liu, S.-S. Guo, and X.-L. Wang, “Effects induced by swift argon-ion irradiation in proton-exchanged LiNbO3 crystal,” Chin. Phys. B 21, 056103 (2012).

IEEE Photon. Technol. Lett. (1)

B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, “Technological implementation of bragg grating reflectors in Ti: LiNbO3 waveguides by proton exchange,” IEEE Photon. Technol. Lett. 14(10), 1430–1432 (2002).
[Crossref]

J. Appl. Phys. (4)

L. C. Feldman and J. W. Rodgers, “Depth profile of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[Crossref]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[Crossref]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D Appl. Phys. 43(7), 075105 (2010).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (2)

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[Crossref]

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
[Crossref]

Nucl. Instrum. Methods Phys. Sec. B (1)

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Sec. B 46, 156–159 (1990).

Opt. Express (3)

Phys. Rev. B (1)

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[Crossref]

Other (2)

P. J. F. Ziegler, Computer code SRIM ( http://www. srim.org ).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) RBS/C spectra of samples S0, S1, S2, and S3. (b) RBS/C spectra of samples P1 and P2.
Fig. 2
Fig. 2 (a) Damage depth profiles of S0, S1, and S2 samples deduced from RBS/C spectra. (b) Damage depth profiles of proton-exchanged LiNbO3 for samples P1 and P2. (c) Nuclear energy deposition profile of 200 keV He ion in LiNbO3 simulated by SRIM2008.
Fig. 3
Fig. 3 Relative intensity of light reflected from the prism versus the effective refractive index for samples P2 at 633 nm (a), for sample S2 at 633 nm (b), and for sample S2 at 1539 nm (c).
Fig. 4
Fig. 4 The near-field intensity distribution of the waveguide’s TE mode at a wavelength of 633 nm measured at the output facet of sample S2. The chromatic scale represents the relative light intensity.

Tables (1)

Tables Icon

Table 1 Preparation conditions, measured effective refractive indices (Neff) at 633 nm and 1539 nm for the seven samples

Metrics